adds the correct driver, as the IL driver wasn't cut out for the job

This commit is contained in:
Robert Schauklies 2025-10-11 22:40:39 +02:00
parent 5ed20aef7f
commit 59daa25a91
2 changed files with 1253 additions and 68 deletions

939
src/ST7735.py Normal file
View file

@ -0,0 +1,939 @@
#driver for Sainsmart 1.8" TFT display ST7735
#Translated by Guy Carver from the ST7735 sample code.
#Modirfied for micropython-esp32 by boochow
import machine
import time
from math import sqrt
from sysfont import sysfont
#TFTRotations and TFTRGB are bits to set
# on MADCTL to control display rotation/color layout
#Looking at display with pins on top.
#00 = upper left printing right
#10 = does nothing (MADCTL_ML)
#20 = upper left printing down (backwards) (Vertical flip)
#40 = upper right printing left (backwards) (X Flip)
#80 = lower left printing right (backwards) (Y Flip)
#04 = (MADCTL_MH)
#60 = 90 right rotation
#C0 = 180 right rotation
#A0 = 270 right rotation
TFTRotations = [0x00, 0x60, 0xC0, 0xA0]
TFTBGR = 0x08 #When set color is bgr else rgb.
TFTRGB = 0x00
#@micropython.native
def clamp( aValue, aMin, aMax ) :
return max(aMin, min(aMax, aValue))
#@micropython.native
def TFTColor( aR, aG, aB ) :
'''Create a 16 bit rgb value from the given R,G,B from 0-255.
This assumes rgb 565 layout and will be incorrect for bgr.'''
return ((aR & 0xF8) << 8) | ((aG & 0xFC) << 3) | (aB >> 3)
ScreenSize = (128, 160)
class TFT(object) :
"""Sainsmart TFT 7735 display driver."""
NOP = 0x0
SWRESET = 0x01
RDDID = 0x04
RDDST = 0x09
SLPIN = 0x10
SLPOUT = 0x11
PTLON = 0x12
NORON = 0x13
INVOFF = 0x20
INVON = 0x21
DISPOFF = 0x28
DISPON = 0x29
CASET = 0x2A
RASET = 0x2B
RAMWR = 0x2C
RAMRD = 0x2E
VSCRDEF = 0x33
VSCSAD = 0x37
COLMOD = 0x3A
MADCTL = 0x36
FRMCTR1 = 0xB1
FRMCTR2 = 0xB2
FRMCTR3 = 0xB3
INVCTR = 0xB4
DISSET5 = 0xB6
PWCTR1 = 0xC0
PWCTR2 = 0xC1
PWCTR3 = 0xC2
PWCTR4 = 0xC3
PWCTR5 = 0xC4
VMCTR1 = 0xC5
RDID1 = 0xDA
RDID2 = 0xDB
RDID3 = 0xDC
RDID4 = 0xDD
PWCTR6 = 0xFC
GMCTRP1 = 0xE0
GMCTRN1 = 0xE1
BLACK = 0
RED = TFTColor(0xFF, 0x00, 0x00)
MAROON = TFTColor(0x80, 0x00, 0x00)
GREEN = TFTColor(0x00, 0xFF, 0x00)
FOREST = TFTColor(0x00, 0x80, 0x80)
BLUE = TFTColor(0x00, 0x00, 0xFF)
NAVY = TFTColor(0x00, 0x00, 0x80)
CYAN = TFTColor(0x00, 0xFF, 0xFF)
YELLOW = TFTColor(0xFF, 0xFF, 0x00)
PURPLE = TFTColor(0xFF, 0x00, 0xFF)
WHITE = TFTColor(0xFF, 0xFF, 0xFF)
GRAY = TFTColor(0x80, 0x80, 0x80)
@staticmethod
def color( aR, aG, aB ) :
'''Create a 565 rgb TFTColor value'''
return TFTColor(aR, aG, aB)
def __init__( self, spi, aDC, aReset, aCS) :
"""aLoc SPI pin location is either 1 for 'X' or 2 for 'Y'.
aDC is the DC pin and aReset is the reset pin."""
self._size = ScreenSize
self._offset = bytearray([0,0])
self.rotate = 0 #Vertical with top toward pins.
self._rgb = True #color order of rgb.
self.tfa = 0 #top fixed area
self.bfa = 0 #bottom fixed area
self.dc = machine.Pin(aDC, machine.Pin.OUT, machine.Pin.PULL_DOWN)
self.reset = machine.Pin(aReset, machine.Pin.OUT, machine.Pin.PULL_DOWN)
self.cs = machine.Pin(aCS, machine.Pin.OUT, machine.Pin.PULL_DOWN)
self.cs(1)
self.spi = spi
self.colorData = bytearray(2)
self.windowLocData = bytearray(4)
self.x = 0
self.y = 0
def size( self ) :
return self._size
# @micropython.native
def on( self, aTF = True ) :
'''Turn display on or off.'''
self._writecommand(TFT.DISPON if aTF else TFT.DISPOFF)
# @micropython.native
def invertcolor( self, aBool ) :
'''Invert the color data IE: Black = White.'''
self._writecommand(TFT.INVON if aBool else TFT.INVOFF)
def set_pos(self,x,y):
self.x = x
self.y = y
# @micropython.native
def rgb( self, aTF = True ) :
'''True = rgb else bgr'''
self._rgb = aTF
self._setMADCTL()
# @micropython.native
def rotation( self, aRot ) :
'''0 - 3. Starts vertical with top toward pins and rotates 90 deg
clockwise each step.'''
if (0 <= aRot < 4):
rotchange = self.rotate ^ aRot
self.rotate = aRot
#If switching from vertical to horizontal swap x,y
# (indicated by bit 0 changing).
if (rotchange & 1):
self._size =(self._size[1], self._size[0])
self._setMADCTL()
# @micropython.native
def pixel( self, aPos, aColor ) :
'''Draw a pixel at the given position'''
if 0 <= aPos[0] < self._size[0] and 0 <= aPos[1] < self._size[1]:
self._setwindowpoint(aPos)
self._pushcolor(aColor)
# @micropython.native
def print(self,text,color=RED,font=sysfont,size = 1,nowrap = False ):
self.text((self.x,self.y),text,color,sysfont,size,False)
# @micropython.native
def text( self, aPos, aString, aColor, aFont, aSize = 1, nowrap = False ) :
'''Draw a text at the given position. If the string reaches the end of the
display it is wrapped to aPos[0] on the next line. aSize may be an integer
which will size the font uniformly on w,h or a or any type that may be
indexed with [0] or [1].'''
if aFont == None:
return
#Make a size either from single value or 2 elements.
if (type(aSize) == int) or (type(aSize) == float):
wh = (aSize, aSize)
else:
wh = aSize
px, py = aPos
width = wh[0] * aFont["Width"] + 1
for c in aString:
self.char((px, py), c, aColor, aFont, wh)
px += width
self.x += width
#We check > rather than >= to let the right (blank) edge of the
# character print off the right of the screen.
if px + width > self._size[0]:
if nowrap:
self.y += aFont["Height"] * wh[1] + 1
break
else:
py += aFont["Height"] * wh[1] + 1
self.y += aFont["Height"] * wh[1] + 1
px = aPos[0]
self.x = aPos[0]
self.x = 0
self.y += aFont["Height"] * wh[1] + 1
# @micropython.native
def char( self, aPos, aChar, aColor, aFont, aSizes ) :
'''Draw a character at the given position using the given font and color.
aSizes is a tuple with x, y as integer scales indicating the
# of pixels to draw for each pixel in the character.'''
if aFont == None:
return
startchar = aFont['Start']
endchar = aFont['End']
ci = ord(aChar)
if (startchar <= ci <= endchar):
fontw = aFont['Width']
fonth = aFont['Height']
ci = (ci - startchar) * fontw
charA = aFont["Data"][ci:ci + fontw]
px = aPos[0]
if aSizes[0] <= 1 and aSizes[1] <= 1 :
buf = bytearray(2 * fonth * fontw)
for q in range(fontw) :
c = charA[q]
for r in range(fonth) :
if c & 0x01 :
pos = 2 * (r * fontw + q)
buf[pos] = aColor >> 8
buf[pos + 1] = aColor & 0xff
c >>= 1
self.image(aPos[0], aPos[1], aPos[0] + fontw - 1, aPos[1] + fonth - 1, buf)
else:
for c in charA :
py = aPos[1]
for r in range(fonth) :
if c & 0x01 :
self.fillrect((px, py), aSizes, aColor)
py += aSizes[1]
c >>= 1
px += aSizes[0]
# @micropython.native
def line( self, aStart, aEnd, aColor ) :
'''Draws a line from aStart to aEnd in the given color. Vertical or horizontal
lines are forwarded to vline and hline.'''
if aStart[0] == aEnd[0]:
#Make sure we use the smallest y.
pnt = aEnd if (aEnd[1] < aStart[1]) else aStart
self.vline(pnt, abs(aEnd[1] - aStart[1]) + 1, aColor)
elif aStart[1] == aEnd[1]:
#Make sure we use the smallest x.
pnt = aEnd if aEnd[0] < aStart[0] else aStart
self.hline(pnt, abs(aEnd[0] - aStart[0]) + 1, aColor)
else:
px, py = aStart
ex, ey = aEnd
dx = ex - px
dy = ey - py
inx = 1 if dx > 0 else -1
iny = 1 if dy > 0 else -1
dx = abs(dx)
dy = abs(dy)
if (dx >= dy):
dy <<= 1
e = dy - dx
dx <<= 1
while (px != ex):
self.pixel((px, py), aColor)
if (e >= 0):
py += iny
e -= dx
e += dy
px += inx
else:
dx <<= 1
e = dx - dy
dy <<= 1
while (py != ey):
self.pixel((px, py), aColor)
if (e >= 0):
px += inx
e -= dy
e += dx
py += iny
# @micropython.native
def vline( self, aStart, aLen, aColor ) :
'''Draw a vertical line from aStart for aLen. aLen may be negative.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
stop = (start[0], clamp(start[1] + aLen, 0, self._size[1]))
#Make sure smallest y 1st.
if (stop[1] < start[1]):
start, stop = stop, start
self._setwindowloc(start, stop)
self._setColor(aColor)
self._draw(aLen)
# @micropython.native
def hline( self, aStart, aLen, aColor ) :
'''Draw a horizontal line from aStart for aLen. aLen may be negative.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
stop = (clamp(start[0] + aLen, 0, self._size[0]), start[1])
#Make sure smallest x 1st.
if (stop[0] < start[0]):
start, stop = stop, start
self._setwindowloc(start, stop)
self._setColor(aColor)
self._draw(aLen)
# @micropython.native
def rect( self, aStart, aSize, aColor ) :
'''Draw a hollow rectangle. aStart is the smallest coordinate corner
and aSize is a tuple indicating width, height.'''
self.hline(aStart, aSize[0], aColor)
self.hline((aStart[0], aStart[1] + aSize[1] - 1), aSize[0], aColor)
self.vline(aStart, aSize[1], aColor)
self.vline((aStart[0] + aSize[0] - 1, aStart[1]), aSize[1], aColor)
# @micropython.native
def fillrect( self, aStart, aSize, aColor ) :
'''Draw a filled rectangle. aStart is the smallest coordinate corner
and aSize is a tuple indicating width, height.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
end = (clamp(start[0] + aSize[0] - 1, 0, self._size[0]), clamp(start[1] + aSize[1] - 1, 0, self._size[1]))
if (end[0] < start[0]):
tmp = end[0]
end = (start[0], end[1])
start = (tmp, start[1])
if (end[1] < start[1]):
tmp = end[1]
end = (end[0], start[1])
start = (start[0], tmp)
self._setwindowloc(start, end)
numPixels = (end[0] - start[0] + 1) * (end[1] - start[1] + 1)
self._setColor(aColor)
self._draw(numPixels)
# @micropython.native
def circle( self, aPos, aRadius, aColor ) :
'''Draw a hollow circle with the given radius and color with aPos as center.'''
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
xend = int(0.7071 * aRadius) + 1
rsq = aRadius * aRadius
for x in range(xend) :
y = int(sqrt(rsq - x * x))
xp = aPos[0] + x
yp = aPos[1] + y
xn = aPos[0] - x
yn = aPos[1] - y
xyp = aPos[0] + y
yxp = aPos[1] + x
xyn = aPos[0] - y
yxn = aPos[1] - x
self._setwindowpoint((xp, yp))
self._writedata(self.colorData)
self._setwindowpoint((xp, yn))
self._writedata(self.colorData)
self._setwindowpoint((xn, yp))
self._writedata(self.colorData)
self._setwindowpoint((xn, yn))
self._writedata(self.colorData)
self._setwindowpoint((xyp, yxp))
self._writedata(self.colorData)
self._setwindowpoint((xyp, yxn))
self._writedata(self.colorData)
self._setwindowpoint((xyn, yxp))
self._writedata(self.colorData)
self._setwindowpoint((xyn, yxn))
self._writedata(self.colorData)
# @micropython.native
def fillcircle( self, aPos, aRadius, aColor ) :
'''Draw a filled circle with given radius and color with aPos as center'''
rsq = aRadius * aRadius
for x in range(aRadius) :
y = int(sqrt(rsq - x * x))
y0 = aPos[1] - y
ey = y0 + y * 2
y0 = clamp(y0, 0, self._size[1])
ln = abs(ey - y0) + 1;
self.vline((aPos[0] + x, y0), ln, aColor)
self.vline((aPos[0] - x, y0), ln, aColor)
def fill( self, aColor = BLACK ) :
'''Fill screen with the given color.'''
self.fillrect((0, 0), self._size, aColor)
def image( self, x0, y0, x1, y1, data ) :
self._setwindowloc((x0, y0), (x1, y1))
self._writedata(data)
def setvscroll(self, tfa, bfa) :
''' set vertical scroll area '''
self._writecommand(TFT.VSCRDEF)
data2 = bytearray([0, tfa])
self._writedata(data2)
data2[1] = 162 - tfa - bfa
self._writedata(data2)
data2[1] = bfa
self._writedata(data2)
self.tfa = tfa
self.bfa = bfa
def vscroll(self, value) :
a = value + self.tfa
if (a + self.bfa > 162) :
a = 162 - self.bfa
self._vscrolladdr(a)
def _vscrolladdr(self, addr) :
self._writecommand(TFT.VSCSAD)
data2 = bytearray([addr >> 8, addr & 0xff])
self._writedata(data2)
# @micropython.native
def _setColor( self, aColor ) :
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
self.buf = bytes(self.colorData) * 32
# @micropython.native
def _draw( self, aPixels ) :
'''Send given color to the device aPixels times.'''
self.dc(1)
self.cs(0)
for i in range(aPixels//32):
self.spi.write(self.buf)
rest = (int(aPixels) % 32)
if rest > 0:
buf2 = bytes(self.colorData) * rest
self.spi.write(buf2)
self.cs(1)
# @micropython.native
def _setwindowpoint( self, aPos ) :
'''Set a single point for drawing a color to.'''
x = self._offset[0] + int(aPos[0])
y = self._offset[1] + int(aPos[1])
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = self._offset[0]
self.windowLocData[1] = x
self.windowLocData[2] = self._offset[0]
self.windowLocData[3] = x
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[0] = self._offset[1]
self.windowLocData[1] = y
self.windowLocData[2] = self._offset[1]
self.windowLocData[3] = y
self._writedata(self.windowLocData)
self._writecommand(TFT.RAMWR) #Write to RAM.
# @micropython.native
def _setwindowloc( self, aPos0, aPos1 ) :
'''Set a rectangular area for drawing a color to.'''
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = self._offset[0]
self.windowLocData[1] = self._offset[0] + int(aPos0[0])
self.windowLocData[2] = self._offset[0]
self.windowLocData[3] = self._offset[0] + int(aPos1[0])
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[0] = self._offset[1]
self.windowLocData[1] = self._offset[1] + int(aPos0[1])
self.windowLocData[2] = self._offset[1]
self.windowLocData[3] = self._offset[1] + int(aPos1[1])
self._writedata(self.windowLocData)
self._writecommand(TFT.RAMWR) #Write to RAM.
#@micropython.native
def _writecommand( self, aCommand ) :
'''Write given command to the device.'''
self.dc(0)
self.cs(0)
self.spi.write(bytearray([aCommand]))
self.cs(1)
#@micropython.native
def _writedata( self, aData ) :
'''Write given data to the device. This may be
either a single int or a bytearray of values.'''
self.dc(1)
self.cs(0)
self.spi.write(aData)
self.cs(1)
#@micropython.native
def _pushcolor( self, aColor ) :
'''Push given color to the device.'''
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
self._writedata(self.colorData)
#@micropython.native
def _setMADCTL( self ) :
'''Set screen rotation and RGB/BGR format.'''
self._writecommand(TFT.MADCTL)
rgb = TFTRGB if self._rgb else TFTBGR
self._writedata(bytearray([TFTRotations[self.rotate] | rgb]))
#@micropython.native
def _reset( self ) :
'''Reset the device.'''
self.dc(0)
self.reset(1)
time.sleep_us(500)
self.reset(0)
time.sleep_us(500)
self.reset(1)
time.sleep_us(500)
def initb( self ) :
'''Initialize blue tab version.'''
self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(50)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(500)
data1 = bytearray(1)
self._writecommand(TFT.COLMOD) #Set color mode.
data1[0] = 0x05 #16 bit color.
self._writedata(data1)
time.sleep_us(10)
data3 = bytearray([0x00, 0x06, 0x03]) #fastest refresh, 6 lines front, 3 lines back.
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.MADCTL)
data1[0] = 0x08 #row address/col address, bottom to top refresh
self._writedata(data1)
data2 = bytearray(2)
self._writecommand(TFT.DISSET5) #Display settings
data2[0] = 0x15 #1 clock cycle nonoverlap, 2 cycle gate rise, 3 cycle oscil, equalize
data2[1] = 0x02 #fix on VTL
self._writedata(data2)
self._writecommand(TFT.INVCTR) #Display inversion control
data1[0] = 0x00 #Line inversion.
self._writedata(data1)
self._writecommand(TFT.PWCTR1) #Power control
data2[0] = 0x02 #GVDD = 4.7V
data2[1] = 0x70 #1.0uA
self._writedata(data2)
time.sleep_us(10)
self._writecommand(TFT.PWCTR2) #Power control
data1[0] = 0x05 #VGH = 14.7V, VGL = -7.35V
self._writedata(data1)
self._writecommand(TFT.PWCTR3) #Power control
data2[0] = 0x01 #Opamp current small
data2[1] = 0x02 #Boost frequency
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
data2[0] = 0x3C #VCOMH = 4V
data2[1] = 0x38 #VCOML = -1.1V
self._writedata(data2)
time.sleep_us(10)
self._writecommand(TFT.PWCTR6) #Power control
data2[0] = 0x11
data2[1] = 0x15
self._writedata(data2)
#These different values don't seem to make a difference.
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
time.sleep_us(10)
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 2 #Start at column 2
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[1] = 1 #Start at row 2.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self._writecommand(TFT.RAMWR)
time.sleep_us(500)
self._writecommand(TFT.DISPON)
self.cs(1)
time.sleep_us(500)
def initr( self ) :
'''Initialize a red tab version.'''
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(150)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(500)
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
self._writecommand(TFT.FRMCTR2) #Frame rate control.
self._writedata(data3)
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
self._writecommand(TFT.FRMCTR3) #Frame rate control.
self._writedata(data6)
time.sleep_us(10)
data1 = bytearray(1)
self._writecommand(TFT.INVCTR) #Display inversion control
data1[0] = 0x07 #Line inversion.
self._writedata(data1)
self._writecommand(TFT.PWCTR1) #Power control
data3[0] = 0xA2
data3[1] = 0x02
data3[2] = 0x84
self._writedata(data3)
self._writecommand(TFT.PWCTR2) #Power control
data1[0] = 0xC5 #VGH = 14.7V, VGL = -7.35V
self._writedata(data1)
data2 = bytearray(2)
self._writecommand(TFT.PWCTR3) #Power control
data2[0] = 0x0A #Opamp current small
data2[1] = 0x00 #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR4) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0x2A #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR5) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0xEE #Boost frequency
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
data1[0] = 0x0E
self._writedata(data1)
self._writecommand(TFT.INVOFF)
self._writecommand(TFT.MADCTL) #Power control
data1[0] = 0xC8
self._writedata(data1)
self._writecommand(TFT.COLMOD)
data1[0] = 0x05
self._writedata(data1)
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 0x00
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
time.sleep_us(10)
self._writecommand(TFT.DISPON)
time.sleep_us(100)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self.cs(1)
def initb2( self ) :
'''Initialize another blue tab version.'''
self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
self._offset[0] = 2
self._offset[1] = 1
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(50)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(500)
data3 = bytearray([0x01, 0x2C, 0x2D]) #
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.FRMCTR2) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.FRMCTR3) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.INVCTR) #Display inversion control
data1 = bytearray(1) #
data1[0] = 0x07
self._writedata(data1)
self._writecommand(TFT.PWCTR1) #Power control
data3[0] = 0xA2 #
data3[1] = 0x02 #
data3[2] = 0x84 #
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.PWCTR2) #Power control
data1[0] = 0xC5 #
self._writedata(data1)
self._writecommand(TFT.PWCTR3) #Power control
data2 = bytearray(2)
data2[0] = 0x0A #
data2[1] = 0x00 #
self._writedata(data2)
self._writecommand(TFT.PWCTR4) #Power control
data2[0] = 0x8A #
data2[1] = 0x2A #
self._writedata(data2)
self._writecommand(TFT.PWCTR5) #Power control
data2[0] = 0x8A #
data2[1] = 0xEE #
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
data1[0] = 0x0E #
self._writedata(data1)
time.sleep_us(10)
self._writecommand(TFT.MADCTL)
data1[0] = 0xC8 #row address/col address, bottom to top refresh
self._writedata(data1)
#These different values don't seem to make a difference.
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
time.sleep_us(10)
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 0x02 #Start at column 2
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[1] = 0x01 #Start at row 2.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
data1 = bytearray(1)
self._writecommand(TFT.COLMOD) #Set color mode.
data1[0] = 0x05 #16 bit color.
self._writedata(data1)
time.sleep_us(10)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self._writecommand(TFT.RAMWR)
time.sleep_us(500)
self._writecommand(TFT.DISPON)
self.cs(1)
time.sleep_us(500)
#@micropython.native
def initg( self ) :
'''Initialize a green tab version.'''
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(150)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(255)
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
self._writecommand(TFT.FRMCTR2) #Frame rate control.
self._writedata(data3)
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
self._writecommand(TFT.FRMCTR3) #Frame rate control.
self._writedata(data6)
time.sleep_us(10)
self._writecommand(TFT.INVCTR) #Display inversion control
self._writedata(bytearray([0x07]))
self._writecommand(TFT.PWCTR1) #Power control
data3[0] = 0xA2
data3[1] = 0x02
data3[2] = 0x84
self._writedata(data3)
self._writecommand(TFT.PWCTR2) #Power control
self._writedata(bytearray([0xC5]))
data2 = bytearray(2)
self._writecommand(TFT.PWCTR3) #Power control
data2[0] = 0x0A #Opamp current small
data2[1] = 0x00 #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR4) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0x2A #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR5) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0xEE #Boost frequency
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
self._writedata(bytearray([0x0E]))
self._writecommand(TFT.INVOFF)
self._setMADCTL()
self._writecommand(TFT.COLMOD)
self._writedata(bytearray([0x05]))
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 0x01 #Start at row/column 1.
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self._writecommand(TFT.DISPON)
time.sleep_us(100)
self.cs(1)
def maker( ) :
t = TFT(1, "X1", "X2")
print("Initializing")
t.initr()
t.fill(0)
return t
def makeb( ) :
t = TFT(1, "X1", "X2")
print("Initializing")
t.initb()
t.fill(0)
return t
def makeg( ) :
t = TFT(1, "X1", "X2")
print("Initializing")
t.initg()
t.fill(0)
return t

View file

@ -1,76 +1,305 @@
# test of printing multiple fonts to the ILI9341 on an M5Stack using H/W SP
# MIT License; Copyright (c) 2017 Jeffrey N. Magee
from ili934xnew import ILI9341, color565
from machine import Pin, SPI,Timer
from ST7735 import TFT
import m5stack
import tt14
import glcdfont
import tt14
import tt24
import tt32
import uasyncio
from rotary_irq_esp import RotaryIRQ
fonts = [glcdfont,tt14,tt24,tt32]
from sysfont import sysfont
def splash():
# display.fill(0)
# display.fill_rect(0, 0, 32, 32, 1)
# display.fill_rect(2, 2, 28, 28, 0)
# display.vline(9, 8, 22, 1)
# display.vline(16, 2, 22, 1)
# display.vline(23, 8, 22, 1)
# display.fill_rect(26, 24, 2, 4, 1)
# display.text("MicroPython", 40, 0, 1)
# display.text("SSD1306", 40, 12, 1)
# display.text("OLED 128x64", 40, 24, 1)
#display.fill(0)
# display.text("SPIN", 34, 4, 1)
# display.text("COATER", 50, 14, 1)
# display.print("Spinner")
# display.print("COATER")
# tft.text((0,y),"Spin Coater",TFT.RED,sysfont,1,nowrap=True)
display.print("Spincoater",size=1,nowrap=True)
display.print("Spincoater",size=3,nowrap=True)
# #display.show()
# def tftprinttest():
# tft.fill(TFT.BLACK);
# v = 30
# tft.text((0, v), "Hello World!", TFT.RED, sysfont, 1, nowrap=True)
# v += sysfont["Height"]
# tft.text((0, v), "Hello World!", TFT.YELLOW, sysfont, 2, nowrap=True)
# v += sysfont["Height"] * 2
# tft.text((0, v), "Hello World!", TFT.GREEN, sysfont, 3, nowrap=True)
# v += sysfont["Height"] * 3
# tft.text((0, v), str(1234.567), TFT.BLUE, sysfont, 4, nowrap=True)
# time.sleep_ms(1500)
# tft.fill(TFT.BLACK);
# v = 0
# tft.text((0, v), "Hello World!", TFT.RED, sysfont)
# v += sysfont["Height"]
# tft.text((0, v), str(math.pi), TFT.GREEN, sysfont)
# v += sysfont["Height"]
# tft.text((0, v), " Want pi?", TFT.GREEN, sysfont)
# v += sysfont["Height"] * 2
# tft.text((0, v), hex(8675309), TFT.GREEN, sysfont)
# v += sysfont["Height"]
# tft.text((0, v), " Print HEX!", TFT.GREEN, sysfont)
# v += sysfont["Height"] * 2
# tft.text((0, v), "Sketch has been", TFT.WHITE, sysfont)
# v += sysfont["Height"]
# tft.text((0, v), "running for: ", TFT.WHITE, sysfont)
# v += sysfont["Height"]
# tft.text((0, v), str(time.ticks_ms() / 1000), TFT.PURPLE, sysfont)
# v += sysfont["Height"]
# tft.text((0, v), " seconds.", TFT.WHITE, sysfont)
def start_view(state, rotary):
display.set_pos(0,0)
text="Spin Coater\n"
#display.set_font(tt14)
text += "> " if rotary.value() == 0 else " "
text+="Edit\n"
text+= "> " if rotary.value() == 1 else " "
text+= "Start\n"
display.print(text)
#print(rotary.value())
def draw_edit_menu(state, rotary):
display.text("Deposit speed:", 0, 0, 1)
display.text("{: >{w}} RPM".format(config["deposit_rpm"], w=5), 56, 10, 1)
display.text("Coating speed:", 0, 21, 1)
display.text("{: >{w}} RPM".format(config["coating_rpm"], w=5), 56, 31, 1)
display.text("Coating time:", 0, 42, 1)
display.text("{: >{w}} sec".format(config["coating_time"], w=5), 56, 52, 1)
def edit_deposit_view(state, rotary):
config["deposit_rpm"] = rotary.value() * 100
draw_edit_menu(state, rotary)
display.text(">", 40, 10, 1)
def edit_coating_rpm_view(state, rotary):
config["coating_rpm"] = rotary.value() * 100
draw_edit_menu(state, rotary)
display.text(">", 40, 32, 1)
def edit_coating_time_view(state, rotary):
config["coating_time"] = rotary.value()
draw_edit_menu(state, rotary)
display.text(">", 40, 54, 1)
def draw_rpm(rpm):
display.text("RPM:{: >{w}.0f}".format(rpm, w=5), 30, 27, 1)
def deposit_view(state, rotary):
display.fill_rect(0, 0, 127, 14, 1)
display.text("Deposit", 36, 3, 0)
draw_rpm(state["rpm"])
display.text("Press to", 32, 42, 1)
display.text("continue", 32, 52, 1)
def coating_view(state, rotary):
display.fill_rect(0, 0, 127, 14, 1)
display.text("Coating", 36, 3, 0)
draw_rpm(state["rpm"])
display.text("{: >{w}} sec".format(state["timer"], w=4), 30, 48, 1)
def decode_ESC_telemetry(data, motor_poles=14):
if len(data) > 10:
# use latest telemetry
data = data[-10:]
temperature = int(data[0]) # degrees Celsius
voltage = int((data[1] << 8) | data[2]) * 0.01 # Volt
current = (
int((data[3] << 8) | data[4]) * 0.01
) # Amps, only available if the ESC has a current meter
consumption = int(
(data[5] << 8) | data[6]
) # mAh, only available if the ESC has a current meter
erpm = int((data[7] << 8) | data[8]) * 100
rpm = erpm / (motor_poles / 2)
crc = data[9]
print(" Temp (C):", temperature)
print(" Voltage (V):", voltage)
print(" Current (A):", current)
print("Consumption (mAh):", consumption)
print(" Erpm:", erpm)
print(" RPM:", rpm)
print(" CRC:", crc)
print()
return temperature, voltage, current, consumption, erpm, rpm
async def update_display():
global state
global rotary
while True:
display.fill(color565(0,0,0))
state["view"](state, rotary)
display.show()
await uasyncio.sleep_ms(33)
async def update_motor():
global state
#we want to use 18 for the SPI-Bus!
#https://docs.micropython.org/en/latest/esp32/quickref.html#hardware-spi-bus
dshot = Dshot(pin=Pin(26))
rpm_pid = PID(
Kp=config["PID"]["Kp"],
Ki=config["PID"]["Ki"],
Kd=config["PID"]["Kd"],
setpoint=0,
sample_time=None,
output_limits=(0.0, 1.0),
# proportional_on_measurement=True,
)
while True:
rpm_pid.setpoint = state["target_rpm"]
# read ESC telemetry
if uart.any() >= 10:
telemetry = decode_ESC_telemetry(uart.read())
if telemetry is not None:
state["rpm"] = telemetry[5]
throttle = rpm_pid(state["rpm"])
# print(
# "Throttle:",
# throttle,
# "pid components:",
# rpm_pid.components,
# "RPM:",
# state["rpm"],
# )
if state["target_rpm"] == 0 and state["rpm"] < 1000:
throttle = 0
rpm_pid.reset()
dshot.set_throttle(throttle)
await uasyncio.sleep_ms(1)
def debounce_button(p):
p.irq(trigger=Pin.IRQ_FALLING, handler=None) # remove irq
timer0 = Timer(0)
print("Button debounced!")
timer0.init(period=20, mode=Timer.ONE_SHOT, callback=lambda t: on_button_press(p))
def on_button_press(p):
p.irq(trigger=Pin.IRQ_FALLING, handler=debounce_button) # restore irq
print("Button pressed")
if p.value() == 1: # debounce
return
# return
# global state
# global config
# global rotary
# if state["view"] == start_view:
# if rotary.value() == 0:
# state["view"] = edit_deposit_view
# rotary.set(
# min_val=0,
# max_val=1000,
# range_mode=RotaryIRQ.RANGE_BOUNDED,
# value=int(0.01 * config["deposit_rpm"]),
# )
# return
# if rotary.value() == 1:
# state["view"] = deposit_view
# state["target_rpm"] = config["deposit_rpm"]
# return
# if state["view"] == edit_deposit_view:
# state["view"] = edit_coating_rpm_view
# rotary.set(
# min_val=0,
# max_val=1000,
# range_mode=RotaryIRQ.RANGE_BOUNDED,
# value=int(0.01 * config["coating_rpm"]),
# )
# return
# if state["view"] == edit_coating_rpm_view:
# state["view"] = edit_coating_time_view
# rotary.set(
# min_val=0,
# max_val=9999,
# range_mode=RotaryIRQ.RANGE_BOUNDED,
# value=config["coating_time"],
# )
# return
# if state["view"] == edit_coating_time_view:
# save_config()
# rotary.set(min_val=0, max_val=1, range_mode=RotaryIRQ.RANGE_BOUNDED, value=0)
# state["view"] = start_view
# return
# if state["view"] == deposit_view:
# state["view"] = coating_view
# start_coating(state)
# return
# if state["view"] == coating_view:
# stop_coating()
# return
global state
global config
global rotary
if state["view"] == start_view:
if rotary.value() == 0:
state["view"] = edit_deposit_view
rotary.set(
min_val=0,
max_val=1000,
range_mode=RotaryIRQ.RANGE_BOUNDED,
value=int(0.01 * config["deposit_rpm"]),
)
return
if rotary.value() == 1:
state["view"] = deposit_view
state["target_rpm"] = config["deposit_rpm"]
return
if state["view"] == edit_deposit_view:
state["view"] = edit_coating_rpm_view
rotary.set(
min_val=0,
max_val=1000,
range_mode=RotaryIRQ.RANGE_BOUNDED,
value=int(0.01 * config["coating_rpm"]),
)
return
if state["view"] == edit_coating_rpm_view:
state["view"] = edit_coating_time_view
rotary.set(
min_val=0,
max_val=9999,
range_mode=RotaryIRQ.RANGE_BOUNDED,
value=config["coating_time"],
)
return
if state["view"] == edit_coating_time_view:
save_config()
rotary.set(min_val=0, max_val=1, range_mode=RotaryIRQ.RANGE_BOUNDED, value=0)
state["view"] = start_view
return
if state["view"] == deposit_view:
state["view"] = coating_view
start_coating(state)
return
if state["view"] == coating_view:
stop_coating()
return
def start_coating(state):
global timer1
global timer2
state["timer"] = config["coating_time"]
timer1.init(
period=config["coating_time"] * 1000,
mode=Timer.ONE_SHOT,
callback=lambda t: stop_coating(),
)
def decrement_timer(t):
state["timer"] -= 1
timer2.init(period=1000, mode=Timer.PERIODIC, callback=decrement_timer)
# state["throttle"] = 0.10
state["target_rpm"] = config["coating_rpm"]
def stop_coating():
global state
global rotary
global timer1
global timer2
timer1.deinit()
timer2.deinit()
state["target_rpm"] = 0
rotary.set(min_val=0, max_val=1, range_mode=RotaryIRQ.RANGE_BOUNDED, value=0)
state["view"] = start_view
def save_config():
global config
with open("config.json", "w") as f:
json.dump(config, f)
@ -79,7 +308,6 @@ text = 'Now is the time for all good men to come to the aid of the party.'
power = Pin(m5stack.TFT_LED_PIN, Pin.OUT)
power.value(1)
# No need to change the software. It's just a matter of different names.. Use this translation:
# SDO(MISO) <not used>
@ -91,7 +319,7 @@ power.value(1)
# CS CS
# GND GND
# VCC VCC
print("BOOOOOOTTTT")
print("BOOOOOOTTT2T")
spi = SPI(
2,
baudrate=40000000,
@ -99,14 +327,19 @@ spi = SPI(
mosi=Pin(m5stack.TFT_MOSI_PIN),
sck=Pin(m5stack.TFT_CLK_PIN))
display = ILI9341(
spi,
cs=Pin(m5stack.TFT_CS_PIN),
dc=Pin(m5stack.TFT_DC_PIN),
rst=Pin(m5stack.TFT_RST_PIN),
w=128,
h=160,
r=3)
# display = ILI9341(
# spi,
# cs=Pin(m5stack.TFT_CS_PIN),
# dc=Pin(m5stack.TFT_DC_PIN),
# rst=Pin(m5stack.TFT_RST_PIN),
# w=160,
# h=128,
# r=5)
tft = TFT(spi,m5stack.TFT_DC_PIN,m5stack.TFT_RST_PIN,m5stack.TFT_CS_PIN)
tft.initr()
tft.rgb(True)
#tftprinttest()
rotary = RotaryIRQ(
pin_num_clk=25,
pin_num_dt=13,
@ -117,12 +350,25 @@ rotary = RotaryIRQ(
)
button = Pin(15, Pin.IN, Pin.PULL_UP)
button.irq(trigger=Pin.IRQ_FALLING, handler=on_button_press)
state = {
"view": start_view,
"rpm": 0,
"target_rpm": 0,
"timer": 0,
"rotary_val":-1
}
#display.erase()
#display.set_pos(0,0)
#display.set_font(tt32)
tft.fill(TFT.BLACK)
display.erase()
display.set_pos(0,0)
for ff in fonts:
display.set_font(ff)
display.print(text)
splash()
# for ff in fonts:
# display.set_font(ff)
# display.print(text)
event_loop = uasyncio.get_event_loop()
event_loop.create_task(update_display())
#event_loop.create_task(update_motor())
event_loop.run_forever()