

CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 9: Memory addressing / mask ROM

Quiz

Microscopy lecture

● Last ~10 slides from lecture 8 were skipped
● Cover them today

Generic memory components

● Address bus
● Row addressing logic
● Column addressing logic
● Data bus
● Memory array

2D memory addressing

● Logical structure of memory is 1D
● 8 x 1M bit array is physically impractical!

– Use 2D structure instead

– Need col muxing

● Mapping of 2D linear
addresses may vary

PIC12F683 SRAM

● 128 bytes
– 32 rows

– 4 cols of 8 bits

Row decode logic

● Input: N-bit row address bus
● Output: 2n word lines
● WL[0] = ... & !A3 & !A2 & !A1 & !A0
● WL[1] = ... & !A3 & !A2 & !A1 & A0

Example row decode logic

● PIC12F683 SRAM
● Data bus on M1 at right
● AND gates at center
● WL buffers at left
● Local interconnect on M1
● Word lines on poly

Column address logic

● For writable memories
– Float BL except during writes

– During writes, drive BL for appropriate column

● For all memories, during reads
– Precharge before reads if necessary

– All columns have data on them

– Mux the one of interest to the data bus

Example column address logic

Why mask ROM?

● Lowest cost per bit of any memory tech
– Single-transistor cells

– No additional masks required (unlike flash etc)

● Highest density of any memory
● Immune to magnetic fields etc
● Can't be corrupted or tampered by software

– But wait for lecture 14 ;)

Disadvantages

● Can't (practically) be patched after manufacture
– Requires massively costly mask respin

– Need fully debugged code beforehand!

Mask ROM vs OTP

● Mask ROM
– Physically hard-wired

– Dedicated mask for each ROM image

● OTP (one-time-programmable) ROM (PROM)
– Programmed (once) after manufacture

– Same mask for all ROM images

– Less dense, requires write circuitry

– Covered in the next lecture

The hacker's viewpoint

● Target has data in mask ROM
● How do we read it?
● Full ROM circuit analysis usually not required

– We just want the data

– Figure out enough to know what goes where

NOR mask ROM

● Pull all BL weakly to Vdd,
assert one WL

● Switch to Vss may be at
each WL/BL junction

– WL off? Do nothing

– WL on? Pull BL low

NOR mask ROM

NAND mask ROM

● Pull all BL weakly to Vdd
● Assert all but one WL
● Switches in series from BL to ground
● If no switch, output goes low
● If (open) switch, output stays high
● Denser than NOR, but slower

NAND mask ROM

Mask ROM technologies

● Via based
● Metal based
● Implant based

Via ROM

● Usually NOR type
● Transistor is always present

– FEOL processing can be done for all chips

– Then separate wafers for each product

● Remove M1-active via(s) to disable transistor
– Single mask change

● Then standard M1 + interconnect routing on top

Via ROM layout

Via ROM (Roland LA32)

Via ROM (Roland LA32)

Via ROM (unknown source)

Metal ROM

● Usually NAND type
● Transistor is always present
● Short out transistors with M1

Metal ROM layout

Metal ROM example

● TODO: Example die photo if we can find one

Active area ROM

● Usually NOR type
● Can be read optically after deprocessing
● Cut or don't cut channel for transistor

Active area ROM layout

Implant ROM

● Can be NAND or NOR
● Cannot be read optically

– But can be revealed with SCM or Dash etch

● To short out transistor (for NAND ROMs)
– use weak implant to shift Vt = 0

● To open transistor (for NOR ROMs)
– use weak implant to shift Vt > Vdd

Implant ROM layout

Implant rom top metal

Implant ROM after Dash etch

Reading data from mask ROM

● Need to make bits visible first
– Via: Delayer to via layer (if nonplanar)

– Metal: Delayer to metal layer

– Implant: Strip to active, then Dash etch

● Acquire imagery

Reading data from mask ROM

● Extract the 2D bit pattern
– Can be done manually or with machine vision

– Polarity and structure aren't yet known

● Figure out structure
– Which bit layout is 1 and which is 0?

– How do 2D addresses map to linear?

Structure analysis

● Many possible layouts
– Interleaving of several bytes/words per row

– Top-down or bottom-up address increment

– Interleaved or concatenated banks

● Several ways to make sense of it all
– Reverse the decode circuitry

– Trial and error until dump makes sense

Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

