
  

CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 9: Memory addressing / mask ROM



  

Quiz



  

Microscopy lecture

● Last ~10 slides from lecture 8 were skipped
● Cover them today



  

Generic memory components

● Address bus
● Row addressing logic
● Column addressing logic
● Data bus
● Memory array



  

2D memory addressing

● Logical structure of memory is 1D
● 8 x 1M bit array is physically impractical!

– Use 2D structure instead

– Need col muxing

● Mapping of 2D linear
addresses may vary



  

PIC12F683 SRAM

● 128 bytes
– 32 rows

– 4 cols of 8 bits



  

Row decode logic

● Input: N-bit row address bus
● Output: 2n word lines
● WL[0] = ... & !A3 & !A2 & !A1 & !A0
● WL[1] = ... & !A3 & !A2 & !A1 & A0



  

Example row decode logic

● PIC12F683 SRAM
● Data bus on M1 at right
● AND gates at center
● WL buffers at left
● Local interconnect on M1
● Word lines on poly



  

Column address logic

● For writable memories
– Float BL except during writes

– During writes, drive BL for appropriate column

● For all memories, during reads
– Precharge before reads if necessary

– All columns have data on them

– Mux the one of interest to the data bus



  

Example column address logic



  

Why mask ROM?

● Lowest cost per bit of any memory tech
– Single-transistor cells

– No additional masks required (unlike flash etc)

● Highest density of any memory
● Immune to magnetic fields etc
● Can't be corrupted or tampered by software

– But wait for lecture 14 ;)



  

Disadvantages

● Can't (practically) be patched after manufacture
– Requires massively costly mask respin

– Need fully debugged code beforehand!



  

Mask ROM vs OTP

● Mask ROM
– Physically hard-wired

– Dedicated mask for each ROM image

● OTP (one-time-programmable) ROM (PROM)
– Programmed (once) after manufacture

– Same mask for all ROM images

– Less dense, requires write circuitry

– Covered in the next lecture



  

The hacker's viewpoint

● Target has data in mask ROM
● How do we read it?
● Full ROM circuit analysis usually not required

– We just want the data

– Figure out enough to know what goes where



  

NOR mask ROM

● Pull all BL weakly to Vdd, 
assert one WL

● Switch to Vss may be at 
each WL/BL junction

– WL off? Do nothing

– WL on? Pull BL low



  

NOR mask ROM



  

NAND mask ROM

● Pull all BL weakly to Vdd
● Assert all but one WL
● Switches in series from BL to ground
● If no switch, output goes low
● If (open) switch, output stays high
● Denser than NOR, but slower



  

NAND mask ROM



  

Mask ROM technologies

● Via based
● Metal based
● Implant based



  

Via ROM

● Usually NOR type
● Transistor is always present

– FEOL processing can be done for all chips

– Then separate wafers for each product

● Remove M1-active via(s) to disable transistor
– Single mask change

● Then standard M1 + interconnect routing on top



  

Via ROM layout



  

Via ROM (Roland LA32)



  

Via ROM (Roland LA32)



  

Via ROM (unknown source)



  

Metal ROM

● Usually NAND type
● Transistor is always present
● Short out transistors with M1



  

Metal ROM layout



  

Metal ROM example

● TODO: Example die photo if we can find one



  

Active area ROM

● Usually NOR type
● Can be read optically after deprocessing
● Cut or don't cut channel for transistor



  

Active area ROM layout



  

Implant ROM

● Can be NAND or NOR
● Cannot be read optically

– But can be revealed with SCM or Dash etch

● To short out transistor (for NAND ROMs)
– use weak implant to shift Vt = 0

● To open transistor (for NOR ROMs)
– use weak implant to shift Vt > Vdd



  

Implant ROM layout



  

Implant rom top metal



  

Implant ROM after Dash etch



  

Reading data from mask ROM

● Need to make bits visible first
– Via: Delayer to via layer (if nonplanar)

– Metal: Delayer to metal layer

– Implant: Strip to active, then Dash etch

● Acquire imagery



  

Reading data from mask ROM

● Extract the 2D bit pattern
– Can be done manually or with machine vision

– Polarity and structure aren't yet known

● Figure out structure
– Which bit layout is 1 and which is 0?

– How do 2D addresses map to linear?



  

Structure analysis

● Many possible layouts
– Interleaving of several bytes/words per row

– Top-down or bottom-up address increment

– Interleaved or concatenated banks

● Several ways to make sense of it all
– Reverse the decode circuitry

– Trial and error until dump makes sense



  

Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>
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