

CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 7: CPLD Architecture

Programmable logic

● Prototyping custom silicon is expensive
– Need to test before tape-out

– Simulations are slooow

● ASIC setup cost is too high for small runs
– What if we could use something COTS?

Programmable logic

● Can implement any digital logic function
– Limited only by capacity of device

– Performance depends on the function

● FPGAs
– Lookup table (LUT) based. Covered later on.

● CPLDs
– Sum-of-products (SOP) based. Today's lecture.

So what is a CPLD?

● Several conflicting definitions :(
● For the scope of this class, a CPLD is a

programmable logic device built around one or
more programmable AND+OR arrays.

● Generally nonvolatile
– Some vendors refer to LUT-based flash PLDs

as CPLDs. We consider them FPGAs.

● Typically small (<5k gate equiv)
● Typically programmed via JTAG

Sum of products

● Any Boolean equation can be expressed as a
sum of products

● AB + CD + EFGH + IJ(!K)(!L) ...

Programmable Logic Array (PLA)

● Generic circuit for arbitrary SOP expressions
● 2D grid of programmable AND/OR gates

Sense amp AND array

● Ex: Xilinx XC9500* series
● Power-hungry
● Simple
● Dense

CMOS AND array

● Ex: Xilinx CoolRunner-II series
● Power-efficient
● More complex
● Larger

Simple CMOS and array cell

● Real devices usually are tree based

OR array

● Same basic idea as AND array
● Can use CMOS or sense amp designs

Xilinx XC9500XL family

● 350 nm sense amp based CPLD
● Uses flash transistors directly in logic array

– Dense layout

– Need to freeze chip to program

● Messy analog architecture
● Less “clean”, has lots of arch limitations
● We won't be studying this family in detail

Xilinx CoolRunner-II family

● 180 nm CMOS CPLD
● Flash-backed SRAM config cells

– Slightly less dense (need two sets of memory)

– Can program flash while running from RAM

● Very uniform architecture
● We will be studying the XC2C32A in detail

during the rest of the course

Xilinx CoolRunner-II family

● 32, 64, 128, 256, 384, 512 macrocell devices
● 32, 64 are “low end”, others “high end”

– Some additional features in high-end parts

● Original 32/64 had only one I/O bank
● 32A/64A have two

XC2C32A, 64A, 128

XC2C32A block diagram

Die floorplan

Boot process

● Flash is structured as 49 rows x 260 bits
– 9 FB2 macrocell bits + 1 valid bit

– 112 FB2 PLA bits

– 16 ZIA bits (interleaved from both FBs)

– 112 FB1 PLA bits

– 9 FB1 macrocell bits + 1 valid bit

● Counter loops over flash and copies to SRAM
● 48 logic array rows + 1 system config row

Function block

● 40 inputs from ZIA
● Invert to give 80
● 80x56 AND array
● 56x16 OR array
● 16 macrocells, 16 flipflops

Global interconnect (ZIA/AIM)

● Two names in use:
– Zero [static] Power Interconnect Array

– Advanced Interconnect Matrix

● 65 input sources
– 32 I/O pins (16 per FB * 2 FBs)

– 32 FFs (16 per FB * 2 FBs)

– One input-only pin

● 40 independent outputs to each FB

Global interconnect (ZIA/AIM)

● We need a subset of 40 signals out of 65
● What about a 40x65 crossbar?
● Needs 40 65:1 muxes

– We need 64 2:1 per output!

– 2560 2:1 muxes for entire array

– This is a lot of transistors and space!

– 500 nm XC9500 parts did this

● Can we do better?

Global interconnect (ZIA/AIM)

● Yes, we can!
● The full crossbar design produces every

permutation of 40 items chosen from the 65
● We only need every combination, ordering is

unimportant
– AND operation is commutative and associative

● Only route each input to a few outputs

Global interconnect (ZIA/AIM)

● Each row only connects to 6 out of the 65
– Need 40 6:1 muxes instead of 40 65:1

– 5 2:1 muxes per row instead of 64

– >10x die area savings!

● The implicit 65:6 mux is hard-wired with a
different selector for each row

● Some combinations may be unroutable :(

ZIA metal 4: Global data bus

ZIA metal 3: Muxes, WL, X routing

ZIA M3+M4 stack

ZIA M2

ZIA M1

ZIA poly/active

ZIA gate-level floorplan

ZIA schematic: Pulls

ZIA schematic: Tristate mux

ZIA schematic: output buffer

PLA AND array

● 40 inputs J[39:0] from ZIA
● Each AND input is J, !J, or 1
● Seems to be some kind of tree
● Not fully vectorized/analyzed yet

– Final project anyone?

PLA OR array

● 56 inputs P[55:0] from AND array
● Each input is P or 0
● Probably a tree too
● No analysis done yet

– Final project anyone?

Config SRAM

● Several 6T SRAM structures in use

PLA AND array (pairs)
OR array is unpaired

ZIA (single cells) Macrocells (pairs)

Macrocell product terms

● Product term A
– FF set/reset

● Product term B
– IOB output enable

● Product term C (10+3N for macrocell N)
– FF clock enable

– FF clock

Function block product terms

● Control term clock
– FF clock

● Control term set, control term reset
– FF set/reset

● Control term output enable
– IOB output enable

Macrocells

● XOR2 gate
– Input 1 from OR array

– Input 2 is one of {PTC, !PTC, 1, 0}

– Allows for slightly denser packing than pure PLA

● Flipflop fed by XOR or IBUF
– Can be clocked by PTC, CTC, GCK*

– Can be DDR/SDR, DFF/TFF/latch

– Set/reset can be PTA, CTS/R, GSR, or unused

Macrocells

● Macrocell also stores SRAM cells for IOB cfg
● Output of XOR or FF drives OBUF
● Tristate mode can be CTE, PTB, GTS*, or off

I/O

● Your homework 1
● Configurable I/O driver with programmable

tristate, drive strength, Schmitt trigger, etc

Banked I/O

● I/O pins need a power rail
● Normally higher voltage than core supply

– CR-II runs VCCINT at 1.8V

– VCCIO can be 1.5 to 3.3

● Divide pins into groups with separate VCCIO
– Can work with lots of different chips without

needing external level shifters

I/O bank kludges

● XC2C32 and XC2C64 had only one IO bank
– One bit each for input Vth and output drive

● 32A and 64A have two
– Need config per bank

● How to maintain backward compatibility?
– Keep global config

– One in/out level pair per bank

– AND per-bank pair with global

System configuration row

● 49th row of config flash
● 258 data bits wide + 2 valid bits
● Contents:

– User ID (32 bits)

– Config-done bits (2 bits)

– Security/lock bits (7 bits)

– What about the rest? May be unused/free

Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

