CSCI 4974 / 6974 Hardware Reverse Engineering

Lecture 7: CPLD Architecture

REVERSE ENGINEERING

We can do this the easy way or the hard way. But your protocol is getting documented!

Programmable logic

- Prototyping custom silicon is expensive
 - Need to test before tape-out
 - Simulations are slooow
- ASIC setup cost is too high for small runs
 - What if we could use something COTS?

Programmable logic

- Can implement any digital logic function
 - Limited only by capacity of device
 - Performance depends on the function
- FPGAs
 - Lookup table (LUT) based. Covered later on.
- CPLDs
 - Sum-of-products (SOP) based. Today's lecture.

So what is a CPLD?

- Several conflicting definitions :(
- For the scope of this class, a CPLD is a programmable logic device built around one or more programmable AND+OR arrays.
- Generally nonvolatile
 - Some vendors refer to LUT-based flash PLDs as CPLDs. We consider them FPGAs.
- Typically small (<5k gate equiv)
- Typically programmed via JTAG

Sum of products

- Any Boolean equation can be expressed as a sum of products
- AB + CD + EFGH + IJ(!K)(!L) ...

Programmable Logic Array (PLA)

- Generic circuit for arbitrary SOP expressions
- 2D grid of programmable AND/OR gates

Sense amp AND array

- Ex: Xilinx XC9500* series
- Power-hungry
- Simple
- Dense

CMOS AND array

- Ex: Xilinx CoolRunner-II series
- Power-efficient
- More complex
- Larger

Simple CMOS and array cell

Real devices usually are tree based

OR array

- Same basic idea as AND array
- Can use CMOS or sense amp designs

Xilinx XC9500XL family

- 350 nm sense amp based CPLD
- Uses flash transistors directly in logic array
 - Dense layout
 - Need to freeze chip to program
- Messy analog architecture
- Less "clean", has lots of arch limitations
- We won't be studying this family in detail

Xilinx CoolRunner-II family

- 180 nm CMOS CPLD
- Flash-backed SRAM config cells
 - Slightly less dense (need two sets of memory)
 - Can program flash while running from RAM
- Very uniform architecture
- We will be studying the XC2C32A in detail during the rest of the course

Xilinx CoolRunner-II family

- 32, 64, 128, 256, 384, 512 macrocell devices
- 32, 64 are "low end", others "high end"
 - Some additional features in high-end parts
- Original 32/64 had only one I/O bank
- 32A/64A have two

XC2C32A, 64A, 128

XC2C32A (3.24 mm²)

XC2C64A (4.61 mm²)

XC2C128 (9.59 mm²)

X8370 (rev A)

X8380 (rev A)

X7440 (rev B)

XC2C32A block diagram

Die floorplan

Boot process

- Flash is structured as 49 rows x 260 bits
 - 9 FB2 macrocell bits + 1 valid bit
 - 112 FB2 PLA bits
 - 16 ZIA bits (interleaved from both FBs)
 - 112 FB1 PLA bits
 - 9 FB1 macrocell bits + 1 valid bit
- Counter loops over flash and copies to SRAM
- 48 logic array rows + 1 system config row

Function block

- 40 inputs from ZIA
- Invert to give 80
- 80x56 AND array
- 56x16 OR array
- 16 macrocells, 16 flipflops

- Two names in use:
 - Zero [static] Power Interconnect Array
 - Advanced Interconnect Matrix
- 65 input sources
 - 32 I/O pins (16 per FB * 2 FBs)
 - 32 FFs (16 per FB * 2 FBs)
 - One input-only pin
- 40 independent outputs to each FB

- We need a subset of 40 signals out of 65
- What about a 40x65 crossbar?
- Needs 40 65:1 muxes
 - We need 64 2:1 per output!
 - 2560 2:1 muxes for entire array
 - This is a lot of transistors and space!
 - 500 nm XC9500 parts did this
- Can we do better?

- Yes, we can!
- The full crossbar design produces every permutation of 40 items chosen from the 65
- We only need every combination, ordering is unimportant
 - AND operation is commutative and associative
- Only route each input to a few outputs

- Each row only connects to 6 out of the 65
 - Need 40 6:1 muxes instead of 40 65:1
 - 5 2:1 muxes per row instead of 64
 - >10x die area savings!
- The implicit 65:6 mux is hard-wired with a different selector for each row
- Some combinations may be unroutable :(

ZIA metal 4: Global data bus

0	VCCINT		0>	<Α	0			(Эх	9	0					0>	(8	8					Эх	8	4				0	3×	32	2				0	×	8	1		
GND	707																																								
																														3UF											
		FB2_16_FF	FB2_14_FF FB2_13_FF	FB2_12_FF FB2_11_FF	FB2_10_FF FB2_9_FF	FB2_7_FF FB2_7_FF FB2_6_FF	FB2_5_FF	FB2_4_FF FB2_3_FF	FB2_2_FF FB2_1_FF	FB1_16_FF	FB1_15_FF FB1_14_FF	FB1_13_FF	FB1_12_FF	FB1_10_FF	FB1_9_FF	FB1_7_FF	FB1_6_FF FB1_5_FF	FB1_4_FF FB1_3_FF	FB1_2_FF	FB2_16_IBUF	FB2_15_IBUF	FB2_13_IBUF	FB2_12_IBUF FB2_11_IBUF	FB2_10_IBUF FB2_9_IBUF	FB2_8_IBUF	FB2_6_IBUF FB2_5_IBUF	FB2_4_IBUF	FB2_3_IBUF	FB2_2_IBUF FB2_1_IBUF	DEDICATED_IB	FB1_15_IBUF	FB1_14_IBUF	FB1_12_IBUF	FB1_11_IBUF	FB1_10_IBUF FB1_9_IBUF	FB1_8_IBUF	FB1 7_IBUF FB1 6_IBUF	FB1_5_IBUF	FB1_4_IBUF FB1_3_IBUF	FB1_2_IBUF	FB1_1_IBUF

ZIA metal 3: Muxes, WL, X routing

ZIA M3+M4 stack

ZIA M2

ZIA M1

ZIA poly/active

ZIA gate-level floorplan

ZIA schematic: Pulls

ZIA schematic: Tristate mux

ZIA schematic: output buffer

PLA AND array

- 40 inputs J[39:0] from ZIA
- Each AND input is J, !J, or 1
- Seems to be some kind of tree
- Not fully vectorized/analyzed yet
 - Final project anyone?

PLA OR array

- 56 inputs P[55:0] from AND array
- Each input is P or 0
- Probably a tree too
- No analysis done yet
 - Final project anyone?

Config SRAM

Several 6T SRAM structures in use

PLA AND array (pairs)
OR array is unpaired

ZIA (single cells)

Macrocells (pairs)

Macrocell product terms

- Product term A
 - FF set/reset
- Product term B
 - IOB output enable
- Product term C (10+3N for macrocell N)
 - FF clock enable
 - FF clock

Function block product terms

- Control term clock
 - FF clock
- Control term set, control term reset
 - FF set/reset
- Control term output enable
 - IOB output enable

Macrocells

- XOR2 gate
 - Input 1 from OR array
 - Input 2 is one of {PTC, !PTC, 1, 0}
 - Allows for slightly denser packing than pure PLA
- Flipflop fed by XOR or IBUF
 - Can be clocked by PTC, CTC, GCK*
 - Can be DDR/SDR, DFF/TFF/latch
 - Set/reset can be PTA, CTS/R, GSR, or unused

Macrocells

- Macrocell also stores SRAM cells for IOB cfg
- Output of XOR or FF drives OBUF
- Tristate mode can be CTE, PTB, GTS*, or off

1/0

- Your homework 1
- Configurable I/O driver with programmable tristate, drive strength, Schmitt trigger, etc

Banked I/O

- I/O pins need a power rail
- Normally higher voltage than core supply
 - CR-II runs VCCINT at 1.8V
 - VCCIO can be 1.5 to 3.3
- Divide pins into groups with separate VCCIO
 - Can work with lots of different chips without needing external level shifters

I/O bank kludges

- XC2C32 and XC2C64 had only one IO bank
 - One bit each for input Vth and output drive
- 32A and 64A have two
 - Need config per bank
- How to maintain backward compatibility?
 - Keep global config
 - One in/out level pair per bank
 - AND per-bank pair with global

System configuration row

- 49th row of config flash
- 258 data bits wide + 2 valid bits
- Contents:
 - User ID (32 bits)
 - Config-done bits (2 bits)
 - Security/lock bits (7 bits)
 - What about the rest? May be unused/free

Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster < John DMcMaster@gmail.com >

