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Lecture 7: CPLD Architecture



  



  

Programmable logic

● Prototyping custom silicon is expensive
– Need to test before tape-out

– Simulations are slooow

● ASIC setup cost is too high for small runs
– What if we could use something COTS?



  

Programmable logic

● Can implement any digital logic function
– Limited only by capacity of device

– Performance depends on the function

● FPGAs
– Lookup table (LUT) based. Covered later on.

● CPLDs
– Sum-of-products (SOP) based. Today's lecture.



  

So what is a CPLD?

● Several conflicting definitions :(
● For the scope of this class, a CPLD is a 

programmable logic device built around one or 
more programmable AND+OR arrays.

● Generally nonvolatile
– Some vendors refer to LUT-based flash PLDs 

as CPLDs. We consider them FPGAs.

● Typically small (<5k gate equiv)
● Typically programmed via JTAG



  

Sum of products

● Any Boolean equation can be expressed as a 
sum of products

● AB + CD + EFGH + IJ(!K)(!L) ...



  

Programmable Logic Array (PLA)

● Generic circuit for arbitrary SOP expressions
● 2D grid of programmable AND/OR gates



  

Sense amp AND array

● Ex: Xilinx XC9500* series
● Power-hungry
● Simple
● Dense



  

CMOS AND array

● Ex: Xilinx CoolRunner-II series
● Power-efficient
● More complex
● Larger



  

Simple CMOS and array cell

● Real devices usually are tree based



  

OR array

● Same basic idea as AND array
● Can use CMOS or sense amp designs



  

Xilinx XC9500XL family

● 350 nm sense amp based CPLD
● Uses flash transistors directly in logic array

– Dense layout

– Need to freeze chip to program

● Messy analog architecture
● Less “clean”, has lots of arch limitations
● We won't be studying this family in detail



  

Xilinx CoolRunner-II family

● 180 nm CMOS CPLD
● Flash-backed SRAM config cells

– Slightly less dense (need two sets of memory)

– Can program flash while running from RAM

● Very uniform architecture
● We will be studying the XC2C32A in detail 

during the rest of the course



  

Xilinx CoolRunner-II family

● 32, 64, 128, 256, 384, 512 macrocell devices
● 32, 64 are “low end”, others “high end”

– Some additional features in high-end parts

● Original 32/64 had only one I/O bank
● 32A/64A have two



  

XC2C32A, 64A, 128



  

XC2C32A block diagram



  

Die floorplan



  

Boot process

● Flash is structured as 49 rows x 260 bits
– 9 FB2 macrocell bits + 1 valid bit

– 112 FB2 PLA bits

– 16 ZIA bits (interleaved from both FBs)

– 112 FB1 PLA bits

– 9 FB1 macrocell bits + 1 valid bit

● Counter loops over flash and copies to SRAM
● 48 logic array rows + 1 system config row



  

Function block

● 40 inputs from ZIA
● Invert to give 80
● 80x56 AND array
● 56x16 OR array
● 16 macrocells, 16 flipflops



  

Global interconnect (ZIA/AIM)

● Two names in use:
– Zero [static] Power Interconnect Array

– Advanced Interconnect Matrix

● 65 input sources
– 32 I/O pins (16 per FB * 2 FBs)

– 32 FFs (16 per FB * 2 FBs)

– One input-only pin

● 40 independent outputs to each FB



  

Global interconnect (ZIA/AIM)

● We need a subset of 40 signals out of 65
● What about a 40x65 crossbar?
● Needs 40 65:1 muxes

– We need 64 2:1 per output!

– 2560 2:1 muxes for entire array

– This is a lot of transistors and space!

– 500 nm XC9500 parts did this

● Can we do better?



  

Global interconnect (ZIA/AIM)

● Yes, we can!
● The full crossbar design produces every 

permutation of 40 items chosen from the 65
● We only need every combination, ordering is 

unimportant
– AND operation is commutative and associative

● Only route each input to a few outputs



  

Global interconnect (ZIA/AIM)

● Each row only connects to 6 out of the 65
– Need 40 6:1 muxes instead of 40 65:1

– 5 2:1 muxes per row instead of 64

– >10x die area savings!

● The implicit 65:6 mux is hard-wired with a 
different selector for each row

● Some combinations may be unroutable :(



  

ZIA metal 4: Global data bus



  

ZIA metal 3: Muxes, WL, X routing



  

ZIA M3+M4 stack



  

ZIA M2



  

ZIA M1



  

ZIA poly/active



  

ZIA gate-level floorplan



  

ZIA schematic: Pulls



  

ZIA schematic: Tristate mux



  

ZIA schematic: output buffer



  

PLA AND array

● 40 inputs J[39:0] from ZIA
● Each AND input is J, !J, or 1
● Seems to be some kind of tree
● Not fully vectorized/analyzed yet

– Final project anyone?



  

PLA OR array

● 56 inputs P[55:0] from AND array
● Each input is P or 0
● Probably a tree too
● No analysis done yet

– Final project anyone?



  

Config SRAM

● Several 6T SRAM structures in use

PLA AND array (pairs)
OR array is unpaired

ZIA (single cells) Macrocells (pairs)



  

Macrocell product terms

● Product term A
– FF set/reset

● Product term B
– IOB output enable

● Product term C (10+3N for macrocell N)
– FF clock enable

– FF clock



  

Function block product terms

● Control term clock
– FF clock

● Control term set, control term reset
– FF set/reset

● Control term output enable
– IOB output enable



  

Macrocells

● XOR2 gate
– Input 1 from OR array

– Input 2 is one of {PTC, !PTC, 1, 0}

– Allows for slightly denser packing than pure PLA

● Flipflop fed by XOR or IBUF
– Can be clocked by PTC, CTC, GCK*

– Can be DDR/SDR, DFF/TFF/latch

– Set/reset can be PTA, CTS/R, GSR, or unused



  

Macrocells

● Macrocell also stores SRAM cells for IOB cfg
● Output of XOR or FF drives OBUF
● Tristate mode can be CTE, PTB, GTS*, or off



  

I/O

● Your homework 1
● Configurable I/O driver with programmable 

tristate, drive strength, Schmitt trigger, etc



  

Banked I/O

● I/O pins need a power rail
● Normally higher voltage than core supply

– CR-II runs VCCINT at 1.8V

– VCCIO can be 1.5 to 3.3

● Divide pins into groups with separate VCCIO
– Can work with lots of different chips without 

needing external level shifters



  

I/O bank kludges

● XC2C32 and XC2C64 had only one IO bank
– One bit each for input Vth and output drive

● 32A and 64A have two
– Need config per bank

● How to maintain backward compatibility?
– Keep global config

– One in/out level pair per bank

– AND per-bank pair with global



  

System configuration row

● 49th row of config flash
● 258 data bits wide + 2 valid bits
● Contents:

– User ID (32 bits)

– Config-done bits (2 bits)

– Security/lock bits (7 bits)

– What about the rest? May be unused/free



  

Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>
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