CSCI 4974 / 6974 Hardware Reverse Engineering

Lecture 4: CMOS layout

Inkscape

- Vector graphics editor
- Very useful for visualizing VLSI layout
- Demo
- Download today's examples

Materials

- Silicon
 - Undoped
 - P-type
 - N-type
 - Polycrystalline
- Insulators
 - Usually SiO₂
 - Sometimes low-k

- Metal
 - Multiple layers
 - Numbered in order

Color-coding convention

- Based on scheme used in Mead & Conway
- Extended for multilevel metallization

Schematic cross section

Actual cross section (XC2C32A)

Poly resistor

Actual poly resistor

Laser-trimmed film resistor

Typically only seen in precision analog

MIM capacitor

Poly (MOS) capacitor

Actual MOS cap (24C02): M1

Actual MOS cap: Poly

Actual MOS cap: Implant

Semiconductor doping

- Semiconductors have few free charge carriers
- Add trace amounts of materials with
 - Extra valence electrons (N-type): P, As
 - Holes in the shell (P-type): B
- Greatly increases conductivity

P-N junctions

- Forward bias (P-type higher voltage)
 - Charges pulled across junction
 - Current flows freely
- Reverse bias (P-type lower)
 - Charges pulled away from junction
 - No current flows

Small-signal diode

High-current diode

Actual diode (SecurID 600): M2

Actual diode: M1

Actual diode: Implant

Not same diode as first two pics, that one was damaged during sample prep :(

N-channel MOSFET

P-channel MOSFET

Schematic symbols

Actual small-signal NMOS

Dopant stain of two PMOS

Actual pad-driver MOSFETs

MOSFET cross section

EHT = 10.40 kV Signal A = InLens FIB Lock Mags = Yes FIB Probe = 30KV:500 pA Date :28 Jan 2014 Time :16:18:16

Transistor sizing

- Lots of tricks needed to get good performance
- Rds(on) of PMOS is ~2.5x NMOS
- Channel width increased to compensate

Putting it all together: Inverter

Actual inverter: SID600

Varying drive strength

Standard cells

Standard cell routing

Layers typically alternate X and Y axes

In-class exercise 1

In-class exercise 2: Metal

In class exercise 2: Poly

In class exercise 2: Active

Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster < John DMcMaster@gmail.com>

