
  

CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 20: Automated RE / Machine Vision



  

Today's lecture

● Last lecture of the semester!
● Existing tools for reverse engineering of ICs

– Sadly, not too many of these exist :(

● Introduction to machine vision
– Writing your own tools is the way to go for now



  

Existing tools

● degate (automatic standard cell recognition)
● rompar (mask ROM extraction)



  

Degate

● http://www.degate.org/
● Semi-automated standard cell RE



  

Degate

● Recognizes copies of standard cells given a 
manually-identified master image.

– Requires textbook standard cell design: one 
transistor layer, cells on M1, routing on M2+

– Was not useful on the CPLD because there's a 
lot of custom logic with poly-level routing etc

● Can trace wires automatically from images
– I have so far not been able to get this to work :(

– Manual tracing isn't much better than Inkscape



  

Degate

● Can export Verilog or XML netlists for analysis
● Has stability issues

– Last time I tried a year or so ago it was 
completely unusable

– The latest Git build seems to segfault less



  

Rompar

● https://github.com/ApertureLabsLtd/rompar
● Semi-automatic decoding of mask ROM

– Seems to be designed for via type only

● User draws grid and selects threshold
● Tool IDs bright/dark spots



  

Rompar



  

General workflow

● Semi-automatic analysis
– Images are noisy, may have particles, etc

– Fully automated analysis is hard to impossible

– Computer is guided by, but not replacing, the 
human engineer



  

So what is machine vision?

● Treat an N-d image as a function of N inputs
● Function may be vector or scalar valued
● Try to find some structure in the function that 

maps to a useful structure in the real world
● Today's lecture will focus on 2D scalars

– 2D grayscale images

– But much of the material generalizes well



  

Two classes of vision operations

● Pixel filters
– Create a new image from one or more inputs

– Each pixel is a function of the corresponding 
pixel in the input(s) and possibly its neighbors

– Say hello to our friend multivariable calculus ;)

● Higher level analysis
– Make lists of interesting features in filtered 

images (lines, corners, dots, etc)

– Further processing on high-level datasets



  

Our example image

● Xilinx XC3S50A (Spartan-3A, 90 nm)
● 200x optical image of bond pads and M8 power 

routing



  

Simple filter: RGB to grayscale

● gray[x][y] = F(red[x][y], green[x][y], blue[x][y])
● Typically weight green higher (ex: NTSC)

– Y = 0.299R + 0.587G + 0.114B



  

Discrete convolution

● Very common operator for processing pixels in 
a neighborhood around a point

● Analogous to continous-domain convolution
● Pairwise multiply filter kernel, centered at each 

pixel, with image, then sum results
● c[x] = f[0]i[x-1] + f[1]i[x] + f[2]i[x+1] etc



  

1D derivatives

● The derivative of an image along one axis can 
be represented as ∂I/∂x or ∂I/∂y.

● Highlights changing intensity
● In the discrete domain, the simplest case 

comes out to pairwise subtraction!
– Convolve with [-1 0 1]

– dx[y][x] = img[y][x+1] - img[y][x-1]

– Naive [-1 1] will cause image shift



  

Representing derivatives

● Grayscale images are unsigned but gradients 
are signed (value can range from -255 to +255)

● Common mapping for display is (X/2) + 128
– Dark = negative

– Medium gray = 0

– Light = positive



  

More complex gradients

● Most common is the Sobel filter
● Allows a single 3x3 neighborhood to be used 

for both X and Y gradients
● Applies a small amount of perpendicular 

smoothing

[
−1 0 1
−2 0 2
−1 0 1] [

1 2 1
0 0 0

−1 −2 −1]



  

Sobel in X



  

Sobel in Y



  

Gradient magnitude

● Compute X/Y gradients using method of choice
● Treat gradient for each pixel as a 2-vector
● Compute magnitude as usual
● grad[x][y] = sqrt(dx[x][y]2 + dy[x][y]2)



  

Sobel gradient magnitude



  

Thresholding

● Turn a grayscale image into a Boolean image
● thresh[x][y] = gray[x][y] > T ? 1 : 0
● How to choose constant T?
● Use same T globally or vary across image?



  

Constant thresholding



  

Threshold too low



  

Threshold too high



  

RATS

● Robust Automated Threshold Selection
● One of many algorithms for choosing threshold
● Set threshold at the highest gradient in the 

image, weighted by the image area
● Heuristic: Sharply changing regions of the 

image are probably important edges we want to 
preserve



  

Thresholding failures

● What if brightness alone isn't enough to identify 
our target feature?



  

Cross-correlation filter

● Works well for detecting features of known 
size/shape

● Convolve image with a mask shaped like the 
feature (high values to match, low values to 
discard)



  

Via-finding filter

[
−2 −2 0 −2 −2
−2 0 3 0 −2
0 3 6 3 0

−2 0 3 0 −2
−2 −2 0 −2 −2

]



  

After thresholding



  

Blurs

● A blur is essentially a low-pass filter
– Remove high-frequency components from the 

image

● Remove noise or focus on larger features



  

Median filter

● Nonlinear filter for noise removal
● Sample neighborhood around each pixel
● Sort pixels by value and pick the middle
● Small features like speckle noise are removed 

while larger features and edges are preserved



  

Median filter



  

Gaussian blur

● Convolve image with a Gaussian function
● Gaussian function is infinite, wider window for 

same σ reduces artifacts. 3σ is common
● Changing σ affects cutoff frequency



  

Gaussian blur



  

Bandpass filters

● Highlight features between two size ranges
● Used in scale-space systems to focus on one 

feature size at a time



  

Difference of Gaussians

● Bandpass filter made from two Gaussian filters
● Blur with a small σ, then a large σ, and subtract

– Small features are removed by both filters

– Large features are passed by both

– Medium-sized features pass one but not the 
other and show up in the difference



  

Difference of Gaussians



  

Difference of Gaussians



  

Scale invariance

● Results returned by many of these algorithms 
are highly dependent on the size of the image!

● Common solution to this problem is to take a 
series of bandpass-filtered images (using DoG 
etc) and look for features in each one



  

Keypoint matching

● Common algorithms include SIFT and SURF
● Details vary but the basic flow is similar

– Create scale-space sequence from image

– Find interesting areas (keypoints)

– Compute some function of the image about 
each keypoint (descriptors)

– Search for similar descriptors to match similar 
objects, find the same feature in multiple 
images, etc



  

Open source libraries

● OpenCV (http://opencv.org/) - BSD
– General purpose machine-vision library

● ITK (http://www.itk.org/) - Apache, was BSD
– Focus on segmentation and registration but has 

lots of basic filters as well.

– Originally developed for medical images

– Developed by Kitware (located in Clifton Park, 
strong ties to RPI research groups)



  

Closing notes

● This is our last lecture of the semester! I hope 
you've all enjoyed the class as much as I have.

● Final project presentations are next Tuesday!
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Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

