

CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 20: Automated RE / Machine Vision

Today's lecture

● Last lecture of the semester!
● Existing tools for reverse engineering of ICs

– Sadly, not too many of these exist :(

● Introduction to machine vision
– Writing your own tools is the way to go for now

Existing tools

● degate (automatic standard cell recognition)
● rompar (mask ROM extraction)

Degate

● http://www.degate.org/
● Semi-automated standard cell RE

Degate

● Recognizes copies of standard cells given a
manually-identified master image.

– Requires textbook standard cell design: one
transistor layer, cells on M1, routing on M2+

– Was not useful on the CPLD because there's a
lot of custom logic with poly-level routing etc

● Can trace wires automatically from images
– I have so far not been able to get this to work :(

– Manual tracing isn't much better than Inkscape

Degate

● Can export Verilog or XML netlists for analysis
● Has stability issues

– Last time I tried a year or so ago it was
completely unusable

– The latest Git build seems to segfault less

Rompar

● https://github.com/ApertureLabsLtd/rompar
● Semi-automatic decoding of mask ROM

– Seems to be designed for via type only

● User draws grid and selects threshold
● Tool IDs bright/dark spots

Rompar

General workflow

● Semi-automatic analysis
– Images are noisy, may have particles, etc

– Fully automated analysis is hard to impossible

– Computer is guided by, but not replacing, the
human engineer

So what is machine vision?

● Treat an N-d image as a function of N inputs
● Function may be vector or scalar valued
● Try to find some structure in the function that

maps to a useful structure in the real world
● Today's lecture will focus on 2D scalars

– 2D grayscale images

– But much of the material generalizes well

Two classes of vision operations

● Pixel filters
– Create a new image from one or more inputs

– Each pixel is a function of the corresponding
pixel in the input(s) and possibly its neighbors

– Say hello to our friend multivariable calculus ;)

● Higher level analysis
– Make lists of interesting features in filtered

images (lines, corners, dots, etc)

– Further processing on high-level datasets

Our example image

● Xilinx XC3S50A (Spartan-3A, 90 nm)
● 200x optical image of bond pads and M8 power

routing

Simple filter: RGB to grayscale

● gray[x][y] = F(red[x][y], green[x][y], blue[x][y])
● Typically weight green higher (ex: NTSC)

– Y = 0.299R + 0.587G + 0.114B

Discrete convolution

● Very common operator for processing pixels in
a neighborhood around a point

● Analogous to continous-domain convolution
● Pairwise multiply filter kernel, centered at each

pixel, with image, then sum results
● c[x] = f[0]i[x-1] + f[1]i[x] + f[2]i[x+1] etc

1D derivatives

● The derivative of an image along one axis can
be represented as ∂I/∂x or ∂I/∂y.

● Highlights changing intensity
● In the discrete domain, the simplest case

comes out to pairwise subtraction!
– Convolve with [-1 0 1]

– dx[y][x] = img[y][x+1] - img[y][x-1]

– Naive [-1 1] will cause image shift

Representing derivatives

● Grayscale images are unsigned but gradients
are signed (value can range from -255 to +255)

● Common mapping for display is (X/2) + 128
– Dark = negative

– Medium gray = 0

– Light = positive

More complex gradients

● Most common is the Sobel filter
● Allows a single 3x3 neighborhood to be used

for both X and Y gradients
● Applies a small amount of perpendicular

smoothing

[
−1 0 1
−2 0 2
−1 0 1] [

1 2 1
0 0 0

−1 −2 −1]

Sobel in X

Sobel in Y

Gradient magnitude

● Compute X/Y gradients using method of choice
● Treat gradient for each pixel as a 2-vector
● Compute magnitude as usual
● grad[x][y] = sqrt(dx[x][y]2 + dy[x][y]2)

Sobel gradient magnitude

Thresholding

● Turn a grayscale image into a Boolean image
● thresh[x][y] = gray[x][y] > T ? 1 : 0
● How to choose constant T?
● Use same T globally or vary across image?

Constant thresholding

Threshold too low

Threshold too high

RATS

● Robust Automated Threshold Selection
● One of many algorithms for choosing threshold
● Set threshold at the highest gradient in the

image, weighted by the image area
● Heuristic: Sharply changing regions of the

image are probably important edges we want to
preserve

Thresholding failures

● What if brightness alone isn't enough to identify
our target feature?

Cross-correlation filter

● Works well for detecting features of known
size/shape

● Convolve image with a mask shaped like the
feature (high values to match, low values to
discard)

Via-finding filter

[
−2 −2 0 −2 −2
−2 0 3 0 −2
0 3 6 3 0

−2 0 3 0 −2
−2 −2 0 −2 −2

]

After thresholding

Blurs

● A blur is essentially a low-pass filter
– Remove high-frequency components from the

image

● Remove noise or focus on larger features

Median filter

● Nonlinear filter for noise removal
● Sample neighborhood around each pixel
● Sort pixels by value and pick the middle
● Small features like speckle noise are removed

while larger features and edges are preserved

Median filter

Gaussian blur

● Convolve image with a Gaussian function
● Gaussian function is infinite, wider window for

same σ reduces artifacts. 3σ is common
● Changing σ affects cutoff frequency

Gaussian blur

Bandpass filters

● Highlight features between two size ranges
● Used in scale-space systems to focus on one

feature size at a time

Difference of Gaussians

● Bandpass filter made from two Gaussian filters
● Blur with a small σ, then a large σ, and subtract

– Small features are removed by both filters

– Large features are passed by both

– Medium-sized features pass one but not the
other and show up in the difference

Difference of Gaussians

Difference of Gaussians

Scale invariance

● Results returned by many of these algorithms
are highly dependent on the size of the image!

● Common solution to this problem is to take a
series of bandpass-filtered images (using DoG
etc) and look for features in each one

Keypoint matching

● Common algorithms include SIFT and SURF
● Details vary but the basic flow is similar

– Create scale-space sequence from image

– Find interesting areas (keypoints)

– Compute some function of the image about
each keypoint (descriptors)

– Search for similar descriptors to match similar
objects, find the same feature in multiple
images, etc

Open source libraries

● OpenCV (http://opencv.org/) - BSD
– General purpose machine-vision library

● ITK (http://www.itk.org/) - Apache, was BSD
– Focus on segmentation and registration but has

lots of basic filters as well.

– Originally developed for medical images

– Developed by Kitware (located in Clifton Park,
strong ties to RPI research groups)

Closing notes

● This is our last lecture of the semester! I hope
you've all enjoyed the class as much as I have.

● Final project presentations are next Tuesday!

Acknowledgements

● This class could not have happened without
help from a lot of people behind the scenes
doing training, lab setup, and providing
interesting chips for us to study.

● RPI: Prof. Dan Lewis (MatSci), Ray Dove (EM
lab), Bryant Colwill and David Frey (cleanroom)

● The siliconpr0n.org team: John McMaster,
marshallh, balrog, Lord_Nightmare, and anyone
else I forgot.

Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

