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Lecture 19: FPGA architecture



  

What is an FPGA?

● Programmable logic like a CPLD
● 2D array topology

– O(n) interconnect scaling vs O(n2) of a CPLD

● Basic building block is a lookup table (LUT)



  

Today's lecture

● Overview of generic FPGA architecture
● In-depth discussion of two Xilinx architectures

– Spartan-3A

– Spartan-6

● High-level Xilinx FPGA bitstream structure
● A few die shots but no in-depth analysis

– Once I finish my CPLD work all bets are off ;)



  

High-level overview



  

Configurable Logic Block (CLB)

● Contains one or more slices and a switch box
● Number of slices varies by device family

– Spartan-3A has four slices per CLB

– Spartan-6 has two slices per CLB

● Slices implement actual logic
● Switch box is a crossbar

– Route signals from slice I/Os to other CLBs

– Forward multi-hop signals to the next CLB



  

Xilinx XC3S50A (16 x 12 CLBs)



  

Spartan-3A CLB (active layer)



  

Slice

● One or more lookup tables (LUTs)
● One or more D flipflops



  

Lookup table (LUT)

● Basic building block for combinatorial logic
● Small async SRAM array (16-64 bits)
● Load SRAM with truth table
● Feed inputs to address lines
● Use output in other logic
● Typically 4-6 inputs and 1-2 outputs



  

Xilinx Spartan-3A slices

● SLICEL (logic slice), two per CLB
– Two 4:1 LUTs

– Ripple-carry generation logic for adders

– Two 2:1 muxes for making wide-input functions

– Two D flipflops

● SLICEM (memory slice), two per CLB
– All features of SLICEL

– Writable LUTs, can be 16-bit shift reg or SRAM



  

Xilinx Spartan-6 slices

● Three types, but only two slices per CLB
● CLBs alternate in columns

– SLICEX + SLICEL

– SLICEX + SLICEM



  

SLICEX (basic logic)

● One in every CLB
● Four LUTs, configurable as 6:1 or 5:2
● Eight D flipflops



  

SLICEL (logic)

● One in each SLICEL+X CLB
● All features of SLICEX
● Three 2:1 muxes
● Ripple-carry chain



  

SLICEM (memory)

● One in each SLICEM+X CLB
● All features of SLICEL and SLICEX
● Can also use LUTs as:

– 64-bit single port SRAM

– Merge two LUTs to make 64-bit dual port

– 32-bit shift register



  

Block RAM

● LUT-based RAM is asynchronous and 
distributed across the chip

● But uses a lot of die area
● Bulk synchronous SRAM is more area-efficient



  

Spartan-3A block RAM

● 18kbit dual port synchronous SRAM
● Variable topology

– 16k x 1 up to 512 x 36

– Optional parity bit (no parity gen/check logic)

● Four CLBs tall
● Some routing resources shared with multipliers
● Memory can be initialized to arbitrary values



  

Spartan-3A block RAM

● 2 blocks x
72 rows x
128 cols
= 18kbits



  

Spartan-3A block RAM

● 8T dual port SRAM (1.84 x 2.07 μm = 3.8 μm2)
● Inverters between PMOS “H” and NMOS area
● Two sets of access transistors, one per port



  

Spartan-6 block RAM

● Based on Spartan-3A block RAM
● Can be split into two 9kbit blocks

– Some silicon bugs related to these :(

● Separate routing, does not compete with mults



  

Multipliers

● FPGAs are commonly used for DSP stuff
● This means lots of multiply-add operations
● Multipliers need lots of LUTs
● Hard-wired ones save die area and run faster



  

Spartan-3A MULT18x18

● 18 x 18 => 36 bit twos complement multiplier
● Pipeline registers on inputs and outputs
● Cascadable to handle larger numbers



  

Spartan-3A MULT18x18



  

Spartan-6 DSP48A1

● 18 + 18 => 18 bit pre-adder
● 18 x 18 => 36 bit twos complement multiplier
● 36 + 48 => 48 bit adder/accumulator
● Cascadable to handle larger numbers
● Four stages of pipelining



  

SERDES

● FPGA logic is slow but can easily parallelize
● I/O pin counts are limited
● Parallel data on chip => serial data at pins 



  

GPIO SERDES

● Every I/O pin on most modern FPGAs can do 
basic parallel/serial conversion

● Spartan-3A is 1:1 (normal) or 2:1 (DDR) only
● Spartan-6 can do

– Up to 4:1 in one IOB for single-ended

– Cascade both IOBs for up to 8:1 on differential



  

High-speed SERDES

● GPIO SERDES have to be small to fit in every 
I/O cell. This limits their capabilities

● Typically not super fast (~1 GHz max)
● Getting faster requires more advanced features 

that take up die area



  

High-speed SERDES

● Dedicated transceivers (Spartan-6 LXT etc) are 
on specific pins not usable as GPIO and often 
have separate power rails

● Much higher max speeds possible (3 Gbps in 
Spartan-6, up to 30+ Gbps in Virtex-7)

● Lots more features (pre-emphasis, clock 
recovery PLLs, higher serialization rates up to 
30:1 or more)



  

Yield enhancement

● FPGAs are large dies and often push fab limits
● Yields are typically poor, especially to start
● What if we could still use chips with some 

defects?
● Chip vendors are very tight-lipped about these 

techniques, much of this section is speculation



  

Yield enhancement

● Transceivers are very sensitive to fab issues
● Make another version of the chip with no 

transceivers and sell the bad ones!
● Evidence:

– Spartan-6 LXT has unbonded I/O pads

– Spartan-6 LX has no SERDES and extra 
GPIOs, plus SERDES-sized hole in CLB array

– Bitstream size and static power are identical



  

Yield enhancement

● Divide rows or columns of logic into groups
● Allow up to one unit per group to fail
● XC7A75T may be binned XC7A100T

– Exactly 3/4 the BRAM/DSP

– Almost exactly 3/4 the CLBs

– Same static power

– Same bitstream length

– JTAG IDCODE has two bits swapped



  

No bad CLBs



  

Equivalent circuit - 4 columns



  

One bad column



  

Equivalent circuit - 3 columns



  

Boot process

● Use mode pins to select config source (serial 
flash, parallel flash, wait for JTAG, etc)

● Wipe existing config, if any
● Start reading bitstream
● Look for sync header
● Execute bitstream on the config state machine



  

Xilinx bitstream structure

● A Xilinx bitstream file consists of header data 
plus the actual FPGA configuration data.

● The FPGA bitstream itself is essentially 
microcode for a simple state machine and 
consists of a series of scripted register reads 
and writes.

● All of the high-level structure is documented, 
however the logic array configuration is not.



  

Generic Xilinx .bit file structure

● Xilinx .bit files are more than just config data!
● Magic number

– 00 09

– 0f f0 0f f0 0f f0 0f f0

– 00 00 01

● Five config records
– Record type (2 bytes, lowercase letter + null)

– One length byte



  

Generic Xilinx .bit file structure

● Record 'a': Bitstream description
– “foo.ncd;UserID=0xFFFFFFFF”

● Record 'b': Device name
– “6slx9tqg144”

● Record 'c': Compilation date
– “2014/04/15”

● Record 'd': Compilation time
– “10:44:45”



  

Generic Xilinx .bit file structure

● Record 'e': Padding before actual bitstream
● All of the .bit headers are for dev tools etc only; 

the actual device never sees any of this data.
● Typically only the raw binary bitstream, not the 

full .bit file, is stored on firmware flash etc.



  

Spartan-6 bitstream structure

● Treated as a sequence of 16-bit words
● 16 dummy words (0xFFFF) to flush pipeline
● Sync word (aa99 5566) for endian detection
● Configuration frames

– 3-bit type (always 1 or 2)

– 2-bit opcode (0=nop, 1=read, 2=write)

– 6-bit register ID

– 5-bit word count



  

Spartan-6 bitstream structure

● Type 1 frames are single register reads/writes
– Documented in UG380 page 94+

● Type 2 frames are bulk data (config stuff only)
– Length field in header word is ignored

– Actual length is the next two data words

– Len[31:28] is always zero

– Bulk data follows



  

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x0f (CWDT), 1 words, Value = ffff

● Type 1 WRITE to register 0x13 (GENERAL1), 1 words

– Multiboot start address low: 44

● Type 1 WRITE to register 0x14 (GENERAL2), 1 words

– Multiboot SPI opcode: 0x6b

– Multiboot start address high: 0x0

● Type 1 WRITE to register 0x15 (GENERAL3), 1 words, Value = 44

● Type 1 WRITE to register 0x16 (GENERAL4), 1 words

– Golden SPI opcode: 0x6b

● Type 1 WRITE to register 0x17 (GENERAL5), 1 words, Value = 0

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = NULL



  

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x18 (MODE), 1 words, Value = 3100

● Type 1 WRITE to register 0x10 (HC_OPT), 1 words, Value = 5f

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = IPROG

– IPROG reset (to address 44)

– Sync word = aa995566

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = RCRC

● Type 1 WRITE to register 0x0d (FLR), 1 words, Value = 380

● Type 1 WRITE to register 0x0a (COR1), 1 words, Value = 3d0c

● Type 1 WRITE to register 0x0b (COR2), 1 words, Value = 9ee

● Type 1 WRITE to register 0x0e (IDCODE), 2 words, ID code = 04001093

● Type 1 WRITE to register 0x07 (MASK), 1 words, Value = cf



  

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x06 (CTL), 1 words, Value = 81

● Type 1 WRITE to register 0x1c (CCLK_FREQ), 1 words, Value = 3cc8

● Type 1 WRITE to register 0x0c (PWRDN), 1 words, Value = 881

● Type 1 WRITE to register 0x21 (EYE_MASK), 1 words, Value = 0

● Type 1 WRITE to register 0x10 (HC_OPT), 1 words, Value = 1f

● Type 1 WRITE to register 0x0f (CWDT), 1 words, Value = ffff

● Type 1 WRITE to register 0x19 (PU_GWE), 1 words, Value = 5

● Type 1 WRITE to register 0x1a (PU_GTS), 1 words, Value = 4

● Type 1 WRITE to register 0x18 (MODE), 1 words, Value = 3100

● Type 1 WRITE to register 0x13 (GENERAL1), 1 words

– Multiboot start address low: 0



  

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x14 (GENERAL2), 1 words

– Multiboot SPI opcode: 0x0

– Multiboot start address high: 0x0

● Type 1 WRITE to register 0x15 (GENERAL3), 1 words, Value = 0

● Type 1 WRITE to register 0x16 (GENERAL4), 1 words

– Golden SPI opcode: 0x0

● Type 1 WRITE to register 0x17 (GENERAL5), 1 words, Value = 0

● Type 1 WRITE to register 0x1d (SEU_OPT), 1 words, Value = 1be2

● Type 1 WRITE to register 0x1e (EXP_SIGN), 2 words, Value = 00000000

● Config frame starting at 0x146: Type 1 WRITE to register 0x01 (FAR_MAJ), 2 words

●         Value = 00000000



  

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = WCFG

● Type 2 WRITE to register 0x03 (FDRI), 170157 words [This is the array config!]

● Type 1 WRITE to register 0x01 (FAR_MAJ), 2 words, Value = 010e0017

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = WCFG

● Type 2 WRITE to register 0x03 (FDRI), 130 words

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = GRESTORE

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = LFRM

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = GRESTORE

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = START

● Type 1 WRITE to register 0x07 (MASK), 1 words, Value = ff

● Type 1 WRITE to register 0x06 (CTL), 1 words, Value = 81



  

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x00 (CRC), 2 words, CRC = 00245bba

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = DESYNC



  

Code protection

● FPGA bitstreams are typically loaded from 
external flash (SPI or parallel)

● This makes dumping the code trivial
– Can then be copied or reverse engineered

● Three main approaches:
– No countermeasures at all (not worth stealing)

– Encrypt bitstream

– Store bitstream in flash on die



  

Bitstream encryption

● OTP/fuse memory
– Nonvolatile, but can't be changed

– Can potentially be extracted by delayering to 
poly and imaging fuse cells

● Battery backed SRAM
– Needs battery backup but can be updated

– Harder to extract

– Can be zeroized by self-destruct system



  

Reverse engineering

● The actual configuration data is totally 
undocumented and FPGA vendors want to 
keep it that way (“security by obscurity”)

● “In fact, FPGA manufacturers have no tools that can be used to recover a 
netlist from a bitstream. Given the sheer size of modern FPGAs and the 
number of configuration bits involved, recovering an entire design from a 
bitstream is unlikely, probably requiring the resources of a state actor. In 
general, the bitstream generation process serves as a type of design 
obfuscation”

– Xilinx WP365 page 5



  

Reverse engineering

● Several published papers have succeeded in 
reversing parts of various FPGA vendors' 
bitstream formats and completely debunked the 
claims of security by obscurity

● “From the bitstream to the netlist”
http://www.univ-st-etienne.fr/salware/Bibliography_Salware/FPGA%20Bistream
%20Security/Article/Note2008.pdf

● Sadly, few if any of these tools have been 
updated for current-generation parts. RE is 
quite possible but will need custom tool dev.



  

Other proposed countermeasures

● The paper mentioned on the previous slide 
suggests using a Spartan-3AN can avoid 
exposing the bitstream to an outside user.

● Not so fast ;)
● Probe the bond wires

and sniff the bitstream



  

Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>
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