

CSCI 4974 / 6974
Hardware Reverse Engineering

Lecture 19: FPGA architecture

What is an FPGA?

● Programmable logic like a CPLD
● 2D array topology

– O(n) interconnect scaling vs O(n2) of a CPLD

● Basic building block is a lookup table (LUT)

Today's lecture

● Overview of generic FPGA architecture
● In-depth discussion of two Xilinx architectures

– Spartan-3A

– Spartan-6

● High-level Xilinx FPGA bitstream structure
● A few die shots but no in-depth analysis

– Once I finish my CPLD work all bets are off ;)

High-level overview

Configurable Logic Block (CLB)

● Contains one or more slices and a switch box
● Number of slices varies by device family

– Spartan-3A has four slices per CLB

– Spartan-6 has two slices per CLB

● Slices implement actual logic
● Switch box is a crossbar

– Route signals from slice I/Os to other CLBs

– Forward multi-hop signals to the next CLB

Xilinx XC3S50A (16 x 12 CLBs)

Spartan-3A CLB (active layer)

Slice

● One or more lookup tables (LUTs)
● One or more D flipflops

Lookup table (LUT)

● Basic building block for combinatorial logic
● Small async SRAM array (16-64 bits)
● Load SRAM with truth table
● Feed inputs to address lines
● Use output in other logic
● Typically 4-6 inputs and 1-2 outputs

Xilinx Spartan-3A slices

● SLICEL (logic slice), two per CLB
– Two 4:1 LUTs

– Ripple-carry generation logic for adders

– Two 2:1 muxes for making wide-input functions

– Two D flipflops

● SLICEM (memory slice), two per CLB
– All features of SLICEL

– Writable LUTs, can be 16-bit shift reg or SRAM

Xilinx Spartan-6 slices

● Three types, but only two slices per CLB
● CLBs alternate in columns

– SLICEX + SLICEL

– SLICEX + SLICEM

SLICEX (basic logic)

● One in every CLB
● Four LUTs, configurable as 6:1 or 5:2
● Eight D flipflops

SLICEL (logic)

● One in each SLICEL+X CLB
● All features of SLICEX
● Three 2:1 muxes
● Ripple-carry chain

SLICEM (memory)

● One in each SLICEM+X CLB
● All features of SLICEL and SLICEX
● Can also use LUTs as:

– 64-bit single port SRAM

– Merge two LUTs to make 64-bit dual port

– 32-bit shift register

Block RAM

● LUT-based RAM is asynchronous and
distributed across the chip

● But uses a lot of die area
● Bulk synchronous SRAM is more area-efficient

Spartan-3A block RAM

● 18kbit dual port synchronous SRAM
● Variable topology

– 16k x 1 up to 512 x 36

– Optional parity bit (no parity gen/check logic)

● Four CLBs tall
● Some routing resources shared with multipliers
● Memory can be initialized to arbitrary values

Spartan-3A block RAM

● 2 blocks x
72 rows x
128 cols
= 18kbits

Spartan-3A block RAM

● 8T dual port SRAM (1.84 x 2.07 μm = 3.8 μm2)
● Inverters between PMOS “H” and NMOS area
● Two sets of access transistors, one per port

Spartan-6 block RAM

● Based on Spartan-3A block RAM
● Can be split into two 9kbit blocks

– Some silicon bugs related to these :(

● Separate routing, does not compete with mults

Multipliers

● FPGAs are commonly used for DSP stuff
● This means lots of multiply-add operations
● Multipliers need lots of LUTs
● Hard-wired ones save die area and run faster

Spartan-3A MULT18x18

● 18 x 18 => 36 bit twos complement multiplier
● Pipeline registers on inputs and outputs
● Cascadable to handle larger numbers

Spartan-3A MULT18x18

Spartan-6 DSP48A1

● 18 + 18 => 18 bit pre-adder
● 18 x 18 => 36 bit twos complement multiplier
● 36 + 48 => 48 bit adder/accumulator
● Cascadable to handle larger numbers
● Four stages of pipelining

SERDES

● FPGA logic is slow but can easily parallelize
● I/O pin counts are limited
● Parallel data on chip => serial data at pins

GPIO SERDES

● Every I/O pin on most modern FPGAs can do
basic parallel/serial conversion

● Spartan-3A is 1:1 (normal) or 2:1 (DDR) only
● Spartan-6 can do

– Up to 4:1 in one IOB for single-ended

– Cascade both IOBs for up to 8:1 on differential

High-speed SERDES

● GPIO SERDES have to be small to fit in every
I/O cell. This limits their capabilities

● Typically not super fast (~1 GHz max)
● Getting faster requires more advanced features

that take up die area

High-speed SERDES

● Dedicated transceivers (Spartan-6 LXT etc) are
on specific pins not usable as GPIO and often
have separate power rails

● Much higher max speeds possible (3 Gbps in
Spartan-6, up to 30+ Gbps in Virtex-7)

● Lots more features (pre-emphasis, clock
recovery PLLs, higher serialization rates up to
30:1 or more)

Yield enhancement

● FPGAs are large dies and often push fab limits
● Yields are typically poor, especially to start
● What if we could still use chips with some

defects?
● Chip vendors are very tight-lipped about these

techniques, much of this section is speculation

Yield enhancement

● Transceivers are very sensitive to fab issues
● Make another version of the chip with no

transceivers and sell the bad ones!
● Evidence:

– Spartan-6 LXT has unbonded I/O pads

– Spartan-6 LX has no SERDES and extra
GPIOs, plus SERDES-sized hole in CLB array

– Bitstream size and static power are identical

Yield enhancement

● Divide rows or columns of logic into groups
● Allow up to one unit per group to fail
● XC7A75T may be binned XC7A100T

– Exactly 3/4 the BRAM/DSP

– Almost exactly 3/4 the CLBs

– Same static power

– Same bitstream length

– JTAG IDCODE has two bits swapped

No bad CLBs

Equivalent circuit - 4 columns

One bad column

Equivalent circuit - 3 columns

Boot process

● Use mode pins to select config source (serial
flash, parallel flash, wait for JTAG, etc)

● Wipe existing config, if any
● Start reading bitstream
● Look for sync header
● Execute bitstream on the config state machine

Xilinx bitstream structure

● A Xilinx bitstream file consists of header data
plus the actual FPGA configuration data.

● The FPGA bitstream itself is essentially
microcode for a simple state machine and
consists of a series of scripted register reads
and writes.

● All of the high-level structure is documented,
however the logic array configuration is not.

Generic Xilinx .bit file structure

● Xilinx .bit files are more than just config data!
● Magic number

– 00 09

– 0f f0 0f f0 0f f0 0f f0

– 00 00 01

● Five config records
– Record type (2 bytes, lowercase letter + null)

– One length byte

Generic Xilinx .bit file structure

● Record 'a': Bitstream description
– “foo.ncd;UserID=0xFFFFFFFF”

● Record 'b': Device name
– “6slx9tqg144”

● Record 'c': Compilation date
– “2014/04/15”

● Record 'd': Compilation time
– “10:44:45”

Generic Xilinx .bit file structure

● Record 'e': Padding before actual bitstream
● All of the .bit headers are for dev tools etc only;

the actual device never sees any of this data.
● Typically only the raw binary bitstream, not the

full .bit file, is stored on firmware flash etc.

Spartan-6 bitstream structure

● Treated as a sequence of 16-bit words
● 16 dummy words (0xFFFF) to flush pipeline
● Sync word (aa99 5566) for endian detection
● Configuration frames

– 3-bit type (always 1 or 2)

– 2-bit opcode (0=nop, 1=read, 2=write)

– 6-bit register ID

– 5-bit word count

Spartan-6 bitstream structure

● Type 1 frames are single register reads/writes
– Documented in UG380 page 94+

● Type 2 frames are bulk data (config stuff only)
– Length field in header word is ignored

– Actual length is the next two data words

– Len[31:28] is always zero

– Bulk data follows

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x0f (CWDT), 1 words, Value = ffff

● Type 1 WRITE to register 0x13 (GENERAL1), 1 words

– Multiboot start address low: 44

● Type 1 WRITE to register 0x14 (GENERAL2), 1 words

– Multiboot SPI opcode: 0x6b

– Multiboot start address high: 0x0

● Type 1 WRITE to register 0x15 (GENERAL3), 1 words, Value = 44

● Type 1 WRITE to register 0x16 (GENERAL4), 1 words

– Golden SPI opcode: 0x6b

● Type 1 WRITE to register 0x17 (GENERAL5), 1 words, Value = 0

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = NULL

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x18 (MODE), 1 words, Value = 3100

● Type 1 WRITE to register 0x10 (HC_OPT), 1 words, Value = 5f

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = IPROG

– IPROG reset (to address 44)

– Sync word = aa995566

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = RCRC

● Type 1 WRITE to register 0x0d (FLR), 1 words, Value = 380

● Type 1 WRITE to register 0x0a (COR1), 1 words, Value = 3d0c

● Type 1 WRITE to register 0x0b (COR2), 1 words, Value = 9ee

● Type 1 WRITE to register 0x0e (IDCODE), 2 words, ID code = 04001093

● Type 1 WRITE to register 0x07 (MASK), 1 words, Value = cf

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x06 (CTL), 1 words, Value = 81

● Type 1 WRITE to register 0x1c (CCLK_FREQ), 1 words, Value = 3cc8

● Type 1 WRITE to register 0x0c (PWRDN), 1 words, Value = 881

● Type 1 WRITE to register 0x21 (EYE_MASK), 1 words, Value = 0

● Type 1 WRITE to register 0x10 (HC_OPT), 1 words, Value = 1f

● Type 1 WRITE to register 0x0f (CWDT), 1 words, Value = ffff

● Type 1 WRITE to register 0x19 (PU_GWE), 1 words, Value = 5

● Type 1 WRITE to register 0x1a (PU_GTS), 1 words, Value = 4

● Type 1 WRITE to register 0x18 (MODE), 1 words, Value = 3100

● Type 1 WRITE to register 0x13 (GENERAL1), 1 words

– Multiboot start address low: 0

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x14 (GENERAL2), 1 words

– Multiboot SPI opcode: 0x0

– Multiboot start address high: 0x0

● Type 1 WRITE to register 0x15 (GENERAL3), 1 words, Value = 0

● Type 1 WRITE to register 0x16 (GENERAL4), 1 words

– Golden SPI opcode: 0x0

● Type 1 WRITE to register 0x17 (GENERAL5), 1 words, Value = 0

● Type 1 WRITE to register 0x1d (SEU_OPT), 1 words, Value = 1be2

● Type 1 WRITE to register 0x1e (EXP_SIGN), 2 words, Value = 00000000

● Config frame starting at 0x146: Type 1 WRITE to register 0x01 (FAR_MAJ), 2 words

● Value = 00000000

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = WCFG

● Type 2 WRITE to register 0x03 (FDRI), 170157 words [This is the array config!]

● Type 1 WRITE to register 0x01 (FAR_MAJ), 2 words, Value = 010e0017

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = WCFG

● Type 2 WRITE to register 0x03 (FDRI), 130 words

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = GRESTORE

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = LFRM

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = GRESTORE

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = START

● Type 1 WRITE to register 0x07 (MASK), 1 words, Value = ff

● Type 1 WRITE to register 0x06 (CTL), 1 words, Value = 81

Example XC6SLX9 bitstream

● Type 1 WRITE to register 0x00 (CRC), 2 words, CRC = 00245bba

● Type 1 WRITE to register 0x05 (CMD), 1 words, Command = DESYNC

Code protection

● FPGA bitstreams are typically loaded from
external flash (SPI or parallel)

● This makes dumping the code trivial
– Can then be copied or reverse engineered

● Three main approaches:
– No countermeasures at all (not worth stealing)

– Encrypt bitstream

– Store bitstream in flash on die

Bitstream encryption

● OTP/fuse memory
– Nonvolatile, but can't be changed

– Can potentially be extracted by delayering to
poly and imaging fuse cells

● Battery backed SRAM
– Needs battery backup but can be updated

– Harder to extract

– Can be zeroized by self-destruct system

Reverse engineering

● The actual configuration data is totally
undocumented and FPGA vendors want to
keep it that way (“security by obscurity”)

● “In fact, FPGA manufacturers have no tools that can be used to recover a
netlist from a bitstream. Given the sheer size of modern FPGAs and the
number of configuration bits involved, recovering an entire design from a
bitstream is unlikely, probably requiring the resources of a state actor. In
general, the bitstream generation process serves as a type of design
obfuscation”

– Xilinx WP365 page 5

Reverse engineering

● Several published papers have succeeded in
reversing parts of various FPGA vendors'
bitstream formats and completely debunked the
claims of security by obscurity

● “From the bitstream to the netlist”
http://www.univ-st-etienne.fr/salware/Bibliography_Salware/FPGA%20Bistream
%20Security/Article/Note2008.pdf

● Sadly, few if any of these tools have been
updated for current-generation parts. RE is
quite possible but will need custom tool dev.

Other proposed countermeasures

● The paper mentioned on the previous slide
suggests using a Spartan-3AN can avoid
exposing the bitstream to an outside user.

● Not so fast ;)
● Probe the bond wires

and sniff the bitstream

Questions?

● TA: Andrew Zonenberg <azonenberg@drawersteak.com>

● Image credit: Some images CC-BY from:

– John McMaster <JohnDMcMaster@gmail.com>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

