CSCI 4974 / 6974 Hardware Reverse Engineering

Lecture 14: Invasive attacks

Attack types

- Semi-invasive
 - Device is depackaged, but die isn't damaged
- Invasive
 - Any attack involving physical damage to die

Semi-invasive attacks

- UV [E]EPROM/Flash erasure
- Laser glitching
- Laser-assisted power analysis

UV memory erasure

- Shield memory to be preserved
 - Apply opaque paint under optical microscope
- Expose target memory to shortwave UV light
 - Unshielded mercury vapor tube is ideal
 - Direct sunlight may work but is a bit slower
- Exposed memory cells should now be "1"

UV memory erasure

- Works with all floating-gate memories
- Serious limitations!
 - Only works one way, cannot set bits to 0
 - Indiscriminate, can't target single bits
- But very easy and inexpensive

Microchip PIC12F683

- 350 nm 3-metal
- 8-bit RISC CPU core
 - 20 MHz / 4 CPI = 5 MIPS
 - 8-level hardware stack

PIC12F683 memory arrays

- 128 bytes SRAM
- 256 bytes data EEPROM
- 2048 words flash
- 12 bit configuration register

Configuration memory map

- 0000 07FF = firmware flash
- 2000 2003 = user ID code
- 2006 2006 = device ID (ROM)
- 2007 2007 = config word
- 2008 2008 = calibration word
- 2100 21FF = data EEPROM
- Other locations non-implemented

Configuration register

- Stored at word address 0x2007
 - Byte address 0x400e
- Boot configuration stuff
 - Several bits related to clock sources, resets
 - CONFIG[7] = CPD# (read lock on EEPROM)
 - CONFIG[6] = CP# (read lock on flash)
 - If bit is 1, can read back over ICSP
 - If bit is 0, readback gives all zeroes

Configuration register

- Older UV EPROM PICs needed "1" = unlocked
- Modern parts (at least up to 350 nm) kept this
 - Susceptible to UV light attacks!

PIC12F683 M3 and poly

SRAM

Flash

EEPROM

20 μm

Config register

Obj: Neo40 20 μm

Memory array spacings

UV attack demo, part 1

Black nail polish mask over die

UV attack demo, part 1

- Program target chip, set CP#
- Demonstrate readback failure
- Put in UV box and turn on

Optical fault injection

- Hook a laser or camera flash up to microscope
- Use aperture to focus light onto target area
- Apply precisely timed pulses to flip bits etc
 - Skorobogatov et al

Laser-assisted power analysis

- Similar setup to fault injection
- Apply weak laser beam to one half of a complementary pair
- If transistor is already on, nothing happens
- If transistor is off, it turns partially on
 - Increased leakage shows up in power trace

Invasive attacks

- Microprobing
- Circuit edits
 - Laser
 - FIB
- Other

- Touch a conductive needle to a wire
- Connect probe to oscilloscope
 - May need pre-amplifier for weak/fast signals due to capacitive loading
- Hitting fine-pitch signals, or those not on top metal, may require more prep work

Microprobe stations

- Optical microscope w/ LWD obj
- Chuck for mounting sample
- Micropositioners

Sample mounting

- Some tweaking usually necessary
- Standard vacuum chucks fit full wafers
- May need custom jig for board/die

Sample mounting

Microprobes

 Tungsten (usually) needle electrochemically sharpened to a fine point

Micropositioners

- Probe needle holder
- Reduction mechanism
- Base (vacuum or magnet)
- Quality is important!
 - Horrible backlash on my cheap ones

Polar micropositioner

- Lower cost
- Harder to use
- Single ball joint
 - Two tilt axes
 - One extension axis

Cartesian micropositioner

- Three linear stages at right angles
- More expensive
- Easier to use

- Land probe needle on wire/pad and read stuff
- Landing too hard will damage pad/probe
- Look for slight sideways "scrub" motion on impact

Circuit edits

- Modify the target device in some way
- Destroy wires or transistors
- Add new wires
- Generally not practical to add new transistors

Laser cutting

- Specialized trinocular microscope
 - Mount laser instead of camera on top
- Several possible wavelengths
 - UV, green, IR most common
 - Choice depends on target material
- Shine beam through rectangular aperture

Laser cutting

- Fire short high-intensity pulses
 - CW will heat surrounding area
 - Pulses cause surface ablation
- Repeat until desired material is removed

Laser CVD

- Place sample in vacuum chamber
- Fill with low-pressure organometallic gas
 - W(CO)₆ is common tungsten precursor
- Gas adsorbs onto surface of die
- Low-energy laser pulses induce decomposition
 - Gaseous CO is released
 - Solid W stays on surface

Laser CVD

- Use multiple laser shots to increase thickness
- Adjusting beam shape and scanning across surface allows deposition area to be controlled
- Limited resolution
 - Optical diffraction
 - Heat transfer through material

Focused ion beam (FIB)

- Similar to SEM
 - Uses ionized atoms instead of electrons
- Liquid-metal ion source (LMIS)
 - Tungsten tip similar to field-emission gun
 - Wet tip with liquid Ga
 - Extraction voltage pulls Ga+ ions off tip

Theory of FIB operation

- Ion beam can be manipulated like an e-beam
- Ions emit secondary electrons at impact point
 - Can be used for imaging like SEM
- But kinetic energy of Ga+ is >> that of e-
 - Causes sputtering at point of impact
 - Damages surface
 - Can image with secondary ions
 - Spectroscopy possible too (SIMS)

Dual-beam SEM/FIB

- Two columns on one vacuum chamber
 - Electron gun for imaging
 - Ion gun for milling
- Single set of detectors
- Mix and match both beams
- RPI has two!
 - Zeiss 1540 in cleanroom
 - FEI Versa in MRC (brand new)

FEI Versa 3D

Close quarters in chamber

FIB milling

- Use ion beam at high current
 - Beam will sputter anything it hits
 - Scan across region to be cut
- Not perfect cuts
 - Some Ga+ is implanted in the face of the cut
 - Sputtered material may deposit around the cut

FIB milling

WD = 5.3 mmPixel Size = 75.9 nm

FIB Probe = 30KV:50 pA

Signal A = InLens FIB Lock Mags = No Date: 12 Feb 2014 Time: 12:33:49

- Very similar to laser CVD
- Inject precursor gas into chamber
- Scan ion beam or e-beam over target region
- Secondary electrons induce decomposition
 - SE interaction volume can be large
 - Some "overspray" may occur
 - Use final low-current mill to clean up

- Video
 - https://www.youtube.com/watch?v=Z2JWalmre64

WD = 5.3 mm Pixel Size = 98.0 nm

EHT = 5.00 kV

FIB Probe = 30KV:2 nA

Signal A = SE2

FIB Lock Mags = No

Date :12 Feb 2014 Time :11:30:44

Other circuit edit techniques

- Material removal
 - Lithography: Coat photoresist, expose with epiilluminator or similar, develop, wet etch
- Material deposition
 - Cut holes over interesting nets
 - Evaporate/sputter whole die with conductive material
 - Lift-off or etch to pattern

UV attack demo, part 2

Readout test

Questions?

- TA: Andrew Zonenberg <azonenberg@drawersteak.com>
- Image credit: Some images CC-BY from:
 - John McMaster < John DMcMaster@gmail.com>

