
Fault Attacks

• Overview

– Fault sources

– Exponentiation

• Attacks on RSA

• Attacks on PRNG

Fault Attacks Overview

• Adversary induces faults into a device, while it executes a
known program, and observes the reaction.

• Idea: make sure an error occurs yielding to a faulty result.
If the computation depends on some secret key, a
comparison between correct data and faulty data may
allow to obtain the secret key.
– Dan Boneh, Richard DeMillo, and Richard Lipton from Bellcore

Labs in Sep 25 1996… (aka Belcore Attack).

• They are real and used to break security mechanisms even
before the cryptographic community became aware of
them.
– Pay TV card hackers used rapid transient changes in the clock

signal, called clock glitches, to access pay TV channels before
1996.

Inducing Faults in the Physical World

• Cosmic Rays- very high-energy subatomic particles originating
in outer space. Research in electrical equipment used in
aviation or space travel found that cosmic rays can flip single
bits in the memory of an electronic device. The DRAM cells of a
typical PC were expected to suffer such a bit ip about once per
month. --- not practical tool for adversary.

• α-, β-, and X-rays. α-, β-rays are not practical . Although
standard commercial X-ray sources, e.g., an airport baggage
scanner, produce X-rays which have not enough energy per
particle to interact with DRAM circuitry, there are high-energy
\hard" X-ray sources, which \might possibly do the job“
– All three approaches can flip single bits in memory if applied

successfully, however, targeting a specific bit is very difficult.

Physical Faults (cont.)

• Heat / Infrared Radiation: infrared radiation coming
from a simple 50-watt spotlight clip-on lamp together
with a variable AC power supply shown to successfully
to induce faults into a desktop PC.
– This attack succeeded to induce single bit flips for temperatures between 80 and

100 Celsius. However, the experiment also showed that unless finely tuned, the
attacks often cause the operating system to crash

• Power Spikes.
– a smartcard must tolerate a certain variation in the power supply VCC

e.g., 10% of the standard voltage of 5V. However, if the variation is
significantly higher than 10%, the card is no longer required to work
properly. ISO 7816-2 spec for smartcards:

Faults (Cont).

• Clock Glitches:
– Hardware must also work properly with deviations of

clock rise and clock fall times of 9% from the standard
period clock cycle. Smartcards are usually provided
with a 3.5 MHz signal.

– Since the adversary may replace the card reader by
laboratory equipment, he may provide the card with a
clock signal, which incorporates short massive
deviations from the standard signal, which are beyond
the required tolerance bounds. Such signals are called
glitches.

– clock glitch attacks did not emerge in the scientific
community but in the pay-TV hacker community

Countermeasures

• Sensors and filters, which aim to detect attacks, e.g., using
anomalous frequency detectors, anomalous voltage
detectors, or light detectors

• use redundancy, i.e., dual-rail logic, where memory is
doubled, doubled hardware, capable of computing a result
twice in parallel, or doubled computations, where a
computation is performed twice on the same hardware

• use of a randomized clock to achieve an unstable internal
frequency, bus line and memory encryption, dummy random
cycles, and active and passive shields protecting the internal
circuits.---- we will not cover these!!

Characterization of Faults

• Control on the fault location: 1-no control, 2-loose control (a selected
variable can be targeted), and 3-complete control (selected bits can be
targeted).

• Control on the timing: 1-no control, 2-loose control (a selected
variable can be targeted), and 3-complete control

• The number of bits faulted: 1-single faulty bit", 2- few faulty bits"
(e.g., a byte), and 3- a random number of faulty bits" (bounded by the
length of the variable).

• Fault type : also known in the literature as the “fault model “it
describes the efect of a fault on each individual bit.

• Success probability: For example, some physical attacks might have a
greater probability of resetting a bit than of setting that bit.

• Fault duration: 1-transient faults, 2-permanent faults, 3-destructive
faults.

Fault Models

Let B = { b1 ,…, bn} be an arbitrary set of bits stored in memory.

• Bit flip fault: all bits of B are set to their complementary values

• Random fault. Then the bits of B are set to random values

• Bit set or reset fault. Then the bits of B are set to chosen values

• Single bit fault: addition or subtraction of a single bit so that a

variable X is changed to X  X~ = X ±2k for 0 ≤ k ≤ l(X)-1
The bit position k is assumed to be chosen according to the uniform
distribution and subsequent choices are assumed to be i.i.d..

Right2Left Repeated Squaring

Fault Model
[Boneh-DeMillo-Lipton01]

• Single Bit Fault Model
• Adversary runs a polynomial number of times while inducing

faults.
• Knows both the input messages and the faulty signatures

• The analysis of the attack assumes that the messages are

chosen i.i.d. from according to the uniform distribution.

• Targets the intermediate variable y used on the right hand side
in Line 4.

N

~(,)i iM S

Analysis

Let Mv be an input to Algorithm

Note that adversary does not need to know
the correct signatures Sv in order to describe the faulty values.

Attack

recover all bits of d in blocks of m bits starting from the most
significant bit dn-1 where m is a parameter, such that 2m is an
acceptable amount of offline work.

• Find values w and ±2b, such that Equation is satisfied. then the

bits of w correctly describe the corresponding bits of d, and ±2b
correctly represents the error

• the adversary needs to collect at least c = (n/m) log(2n) many
faulty signatures to guarantee a success probability of 1/2.

• Tradeoff between m and c.
i.e., between the acceptable amount of offline work and the
required number of faulty signatures.

CRT-RSA

CRT-RSA and the Bellcore Attack

• Why CRT based implementation?

– Exponentiation using CRT is much faster than
repeated squaring modulo N

• S= xd mod N. For efficiency most implementations exponentiate
as follows: using repeated squaring they first compute

• S1=xd mod p, and S2=xd mod q

• S= aS1 +bS2 mod N

• S1=xd mod p = x d mod p-1 mod p d is O(N) but d mod (p-1) is
O(p) ½ gain. Also the intermediate values are O(p) not O(N).
 quadratic time multiplication gain ¼ of working with N
 S1 takes 1/8 of the time for S  S1 and S2 4 times faster.

The Bellcore Attack

• S is a valid signature, Ŝ faulty signature of x

• Assumption: fault occurs in the computation modulo
only one of the primes (say p).

• Then q=gcd(S-Ŝ , N)

Remedies

• Given the public key e, check whether a computed
signature s satisfies

• Compute a result twice, say s1 and s2 using the same data.
If the two results are equal, s1 is returned, otherwise, an
error is detected.

• Shamir’s remedy: choose a small random integer r of about
32 bits, which can then be used to verify intermediate
results with a high probability of detecting all faults

Shamir’s Remedy

Fault Attack to PRNG [Zheng, Matsumoto’96]

• Breaking ElGamal Signature

• Recall: based on hardness of computing discrete logs over a
large finite field

– p: large prime

– g: an integer in [1,….,p-1] with order p-1 mod p

– xa secret key (integer chosen randomly from [1,…p-1] s.t. xa
does not divide p-1

– y is public key such that y=gxa mod p

– Signature on message m is composed of two numbers:
• r= gz mod p where z is a r.# that does not divide p-1

• S= ((hash(m) –xa.r)/z) mod p-1

– Given (m, r, s) if ghash(m) = yr rs mod p then signature is valid

Attack

• Consider PRNG implementation in 1- software, 2-
hardware.

• Attack on software PRNG:

– There is a special register S_info used to generate a new r#
• Fetch content on S_info

• Calculate r# z from S_info

• Update S_info

– Identify the location of S_info and apply physical stress

•  force the info in S_info to temporarily a constant (say all 1s)

– while under pressure ask for a signature for m

– Given m and ElGamal signature (r,s)
• Calculate r# z from all 1’s using the public PRNG

• xa= (hash(m) –s z)/r mod (p-1)

Attack

• Attack on build in Hardware PRNG:

– Again force the info in S_info to temporarily a constant (say
all 1s)

– When the hardware is exposed to “abnormal” physical
environment then PRNG produces predictable output z

– If attacker know z then it is the same case as before

• while under pressure ask for a signature for m

• Given m and (r,s)
– Calculate r.# z from all 1’s using the public PRNG

– xa= (hash(m) –s z)/r mod (p-1)

– If not then get signature on two messages m1 and m2 (note z
is the same since stress is maintained

– Algebraic manipulation gives xa away

Extracting the secret

• Two signatures with the same z value

• Then first obtain z

• And then xa

(1)
mod , 1 mod(1)

and

(2)
mod , 2 mod(1)

z

z

hash m zr
r g p s p

z

hash m zr
r g p s p

z


  


  

(1) (2)
mod(1)

1 2

hash m hash m
z p

s s


 



(1) 1
mod(1)a

hash m s z
x p

r


 

The END

