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Fault Attacks Overview 

• Adversary induces faults into a device, while it executes a 
known program, and observes the reaction. 

• Idea:  make sure an error occurs yielding to a faulty result. 
If the computation depends on some secret key, a 
comparison between correct data and faulty data may 
allow to obtain the secret key.  
– Dan Boneh, Richard DeMillo, and Richard Lipton from Bellcore 

Labs in Sep 25 1996… (aka Belcore Attack). 

• They are real and used to break security mechanisms even 
before the cryptographic community became aware of 
them. 
– Pay TV card hackers used rapid transient changes in the clock 

signal, called clock glitches, to access pay TV channels before 
1996. 



Inducing Faults in the Physical World 

• Cosmic Rays- very high-energy subatomic particles originating 
in outer space. Research in electrical equipment used in 
aviation or space travel found that cosmic rays can flip single 
bits in the memory of an electronic device. The DRAM cells of a 
typical PC were expected to suffer such a bit ip about once per 
month. --- not practical tool for adversary. 

• α-, β-, and X-rays. α-, β-rays are not practical . Although 
standard commercial X-ray sources, e.g., an airport baggage 
scanner, produce X-rays which have not enough energy per 
particle to interact with DRAM circuitry, there are high-energy 
\hard" X-ray sources, which \might possibly do the job“ 
– All three approaches can flip single bits in memory if applied 

successfully, however, targeting a specific bit is very difficult. 



Physical Faults (cont.) 

• Heat / Infrared Radiation: infrared radiation coming 
from a simple 50-watt spotlight clip-on lamp together 
with a variable AC power supply shown to successfully 
to induce faults into a desktop PC. 
–  This attack succeeded to induce single bit flips for temperatures between 80 and 

100 Celsius. However, the experiment also showed that unless finely tuned, the 
attacks often cause the operating system to crash 

• Power Spikes.  
– a smartcard must tolerate a certain variation in the power supply VCC  

e.g., 10% of the standard voltage of 5V. However, if the variation is 
significantly higher than 10%, the card is no longer required to work 
properly. ISO 7816-2 spec for smartcards: 



Faults (Cont). 

• Clock Glitches:  
– Hardware must also work properly with deviations of 

clock rise and clock fall times of 9% from the standard 
period clock cycle. Smartcards are usually provided 
with a 3.5 MHz signal.  

– Since the adversary may replace the card reader by 
laboratory equipment, he may provide the card with a 
clock signal, which incorporates short massive 
deviations from the standard signal, which are beyond 
the required tolerance bounds. Such signals are called 
glitches. 

– clock glitch attacks did not emerge in the scientific 
community but in the pay-TV hacker community 



Countermeasures 

• Sensors and filters, which aim to detect attacks, e.g., using 
anomalous frequency detectors, anomalous voltage 
detectors, or light detectors 

• use redundancy, i.e., dual-rail logic, where memory is 
doubled, doubled hardware, capable of computing a result 
twice in parallel, or doubled computations, where a 
computation is performed twice on the same hardware 

• use of a randomized clock to achieve an unstable internal 
frequency, bus line and memory encryption, dummy random 
cycles, and active and passive shields protecting the internal 
circuits.---- we will not cover these!! 



Characterization of Faults 

• Control on the fault location: 1-no control,  2-loose control (a selected 
variable can be targeted), and 3-complete control (selected bits can be 
targeted). 

• Control on the timing: 1-no control,  2-loose control (a selected 
variable can be targeted), and 3-complete control 

• The number of bits faulted:  1-single faulty bit", 2- few faulty bits" 
(e.g., a byte), and 3- a random number of faulty bits" (bounded by the 
length of the variable). 

• Fault type : also known in the literature as the “fault model “it 
describes the efect of a fault on each individual bit. 

• Success probability: For example, some physical attacks might have a 
greater probability of resetting a bit than of setting that bit.  

• Fault duration: 1-transient faults, 2-permanent faults, 3-destructive 
faults. 



Fault Models 

Let B = { b1 ,…, bn}  be an arbitrary set of bits stored in memory.  
 
• Bit flip fault: all bits of B are set to their complementary values 

 
• Random fault. Then the bits of B are set to random values 

 
• Bit set or reset fault. Then the bits of B are set to chosen values 

 
• Single bit fault: addition or subtraction of a single bit so that  a 

variable X is changed to  X  X~ = X  ±2k for 0 ≤ k  ≤  l(X)-1 
The bit position k is assumed to be chosen according to the uniform 
distribution and subsequent choices are assumed to be i.i.d.. 



Right2Left Repeated Squaring 



Fault Model  
[Boneh-DeMillo-Lipton01] 

• Single Bit Fault Model  
• Adversary  runs a polynomial number of times while inducing 

faults. 
•  Knows both the input messages and the faulty signatures 
 
 
• The analysis of the attack assumes that the messages are 

chosen i.i.d. from             according to the uniform distribution. 
 

• Targets the intermediate variable y used on the right hand side 
in  Line 4. 
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Analysis 

Let Mv be an input to Algorithm 

Note that adversary does not need to know 
the correct signatures Sv in order to describe the faulty values. 



Attack 

recover all bits of d in blocks of m bits starting from the most 
significant bit dn-1   where  m is a parameter, such that 2m is an 
acceptable amount of offline work. 
 
• Find  values w and ±2b, such that Equation  is satisfied. then  the 

bits of w correctly describe the corresponding bits of d, and ±2b 
correctly represents the error 
 

• the adversary needs to collect at least c = (n/m) log(2n) many 
faulty signatures to guarantee a success probability of 1/2.  
 

• Tradeoff  between m and c. 
i.e., between the acceptable amount of offline work and the 
required number of faulty signatures. 



CRT-RSA 



CRT-RSA and the Bellcore Attack 

• Why CRT based implementation? 

– Exponentiation using CRT is much faster than 
repeated squaring modulo N 

• S= xd mod N. For efficiency most implementations exponentiate 
as follows: using repeated squaring they first compute  

• S1=xd mod p,   and    S2=xd mod q 

• S= aS1 +bS2 mod N 

• S1=xd mod p = x d mod p-1 mod p  d is O(N) but d mod (p-1) is 
O(p) ½ gain. Also the intermediate values are O(p) not O(N). 
 quadratic time multiplication gain ¼ of  working with N  
 S1 takes 1/8 of the time for S  S1 and S2 4 times faster. 

 

 



The Bellcore Attack 

• S is a valid signature, Ŝ faulty signature  of x 

• Assumption: fault occurs in the computation modulo 
only one of the primes (say  p). 

 

 

 

• Then    q=gcd(S-Ŝ , N) 

 

  

 



Remedies 

• Given the public key e, check  whether a computed 
signature s satisfies  
 

• Compute a result twice, say s1 and s2 using the same data. 
If the two results are equal, s1 is returned, otherwise, an 
error is detected. 
 

• Shamir’s remedy: choose a small random integer r of about 
32 bits, which can then be used to verify intermediate 
results with a high probability of detecting all faults 



Shamir’s Remedy 



Fault Attack to PRNG [Zheng, Matsumoto’96] 

• Breaking ElGamal Signature 

• Recall: based on hardness of computing discrete logs over a 
large finite field 

– p: large prime 

– g:  an integer in [1,….,p-1] with order p-1 mod p 

– xa secret key (integer chosen randomly from [1,…p-1] s.t. xa 
does not divide p-1 

– y is public key such that y=gxa mod p 

– Signature on message m is composed of two numbers: 
• r= gz mod p     where z is a r.# that does not divide p-1  

• S= ((hash(m) –xa.r)/z) mod p-1 

– Given (m, r, s)  if ghash(m) = yr rs mod p then signature is valid  



Attack 

• Consider PRNG implementation in 1- software, 2- 
hardware. 

• Attack on software PRNG: 

– There is a special register S_info used to generate a new r# 
• Fetch content on S_info 

• Calculate r# z from S_info 

• Update S_info 

– Identify the location of  S_info and apply physical stress 

•  force the info in  S_info to temporarily a constant (say all 1s) 

–  while under pressure ask for a signature for m 

– Given m and  ElGamal signature (r,s) 
• Calculate r# z  from all 1’s  using the public PRNG 

• xa= (hash(m) –s z)/r  mod (p-1) 

 

 

 



Attack 

• Attack on build in Hardware PRNG: 

–  Again force the info in  S_info to temporarily a constant (say 
all 1s)   

– When the hardware is exposed to “abnormal” physical 
environment then PRNG produces predictable  output z 

– If attacker know z then it is the same case as before 

•  while under pressure ask for a signature for m 

• Given m and (r,s) 
– Calculate r.# z from all 1’s  using the public PRNG 

– xa= (hash(m) –s z)/r  mod (p-1) 

– If not then get signature on two messages m1 and m2 (note z 
is the same since stress is maintained 

– Algebraic manipulation gives xa away 
 

 

 



Extracting the secret 

• Two signatures with the same z value 

 

 

 

 

• Then first obtain z 

 

 

• And then xa  
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The END 


