207 lines
4.9 KiB
Go
207 lines
4.9 KiB
Go
package main
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"sync"
|
|
"time"
|
|
|
|
"k8s.io/klog"
|
|
)
|
|
|
|
// daemon is the main service of the succdaemon.
|
|
type daemon struct {
|
|
// adcPirani is the adc implementation returning the voltage of the Pfeiffer
|
|
// Pirani gauge.
|
|
adcPirani adc
|
|
|
|
gpioDiffusionPump gpio
|
|
gpioRoughingPump gpio
|
|
gpioBtnPumpDown gpio
|
|
gpioBtnVent gpio
|
|
gpioBelowRough gpio
|
|
gpioBelowHigh gpio
|
|
|
|
// mu guards the state below.
|
|
mu sync.RWMutex
|
|
daemonState
|
|
}
|
|
|
|
// momentaryOutput is an output that can be triggered for 500ms.
|
|
type momentaryOutput struct {
|
|
// output of the block.
|
|
output bool
|
|
// scheduledOff is when the block should be outputting false again.
|
|
scheduledOff time.Time
|
|
}
|
|
|
|
func (m *momentaryOutput) process() {
|
|
m.output = m.scheduledOff.After(time.Now())
|
|
}
|
|
|
|
func (m *momentaryOutput) trigger() {
|
|
m.scheduledOff = time.Now().Add(time.Millisecond * 500)
|
|
}
|
|
|
|
// thresholdOutput outputs true if a given value is above a setpoint/threshold.
|
|
// It contains debounce logic for processing noisy analog signals.
|
|
type thresholdOutput struct {
|
|
// output of the block.
|
|
output bool
|
|
// debounce is when the debouncer should be inactive again.
|
|
debounce time.Time
|
|
// threshold is the setpoint of the block.
|
|
threshold float64
|
|
}
|
|
|
|
func (t *thresholdOutput) process(value float64) {
|
|
if time.Now().Before(t.debounce) {
|
|
return
|
|
}
|
|
new := value > t.threshold
|
|
if new != t.output {
|
|
t.output = new
|
|
t.debounce = time.Now().Add(time.Second * 5)
|
|
}
|
|
}
|
|
|
|
// ringbufferInput accumulates analog data up to limit samples, and calculates
|
|
// an average.
|
|
type ringbufferInput struct {
|
|
data []float32
|
|
limit uint
|
|
avg float32
|
|
}
|
|
|
|
func (r *ringbufferInput) process(input float32) {
|
|
// TODO(q3k): use actual ringbuffer
|
|
// TODO(q3k): optimize average calculation
|
|
// TODO(q3k): precalculate value in mbar
|
|
r.data = append(r.data, input)
|
|
trim := len(r.data) - int(r.limit)
|
|
if trim > 0 {
|
|
r.data = r.data[trim:]
|
|
}
|
|
avg := float32(0.0)
|
|
for _, v := range r.data {
|
|
avg += v
|
|
}
|
|
if len(r.data) != 0 {
|
|
avg /= float32(len(r.data))
|
|
}
|
|
r.avg = avg
|
|
}
|
|
|
|
// process runs the pain acquisition and control loop of succd.
|
|
func (d *daemon) process(ctx context.Context) {
|
|
ticker := time.NewTicker(time.Millisecond * 100)
|
|
defer ticker.Stop()
|
|
for {
|
|
select {
|
|
case <-ticker.C:
|
|
if err := d.processOnce(ctx); err != nil {
|
|
if errors.Is(err, ctx.Err()) {
|
|
return
|
|
} else {
|
|
klog.Errorf("Processing error: %v", err)
|
|
time.Sleep(time.Second * 10)
|
|
}
|
|
}
|
|
case <-ctx.Done():
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// processOnce runs the main loop step of succd.
|
|
func (d *daemon) processOnce(_ context.Context) error {
|
|
v, err := d.adcPirani.Read()
|
|
if err != nil {
|
|
return fmt.Errorf("when reading ADC: %w", err)
|
|
}
|
|
d.mu.Lock()
|
|
defer d.mu.Unlock()
|
|
|
|
// Process pirani ringbuffers.
|
|
d.piraniVolts3.process(v)
|
|
d.piraniVolts100.process(v)
|
|
|
|
d.pumpdown.process()
|
|
d.vent.process()
|
|
|
|
_, mbar := d.daemonState.pirani()
|
|
d.aboveRough.process(float64(mbar))
|
|
d.aboveHigh.process(float64(mbar))
|
|
|
|
// Check if the pirani gauge is disconnected. Note: this will assume the
|
|
// pirani gauge is connected for the first couple of processing runs as
|
|
// samples are still being captured.
|
|
if d.piraniDetection() == piraniDetectionDisconnected {
|
|
// Unrealistic result, Pirani probe probably disconnected. Failsafe mode.
|
|
if !d.safety.failsafe {
|
|
d.safety.failsafe = true
|
|
klog.Errorf("Pirani probe seems disconnected; enabling failsafe mode")
|
|
}
|
|
} else {
|
|
if d.safety.failsafe {
|
|
if mbar >= 1e2 {
|
|
d.safety.failsafe = false
|
|
klog.Infof("Values are plausible again; quitting failsafe mode")
|
|
}
|
|
}
|
|
}
|
|
|
|
if mbar >= 1e-1 {
|
|
if !d.safety.highPressure {
|
|
d.safety.highPressure = true
|
|
klog.Errorf("Pressure is too high; enabling diffusion pump lockout")
|
|
}
|
|
} else if mbar < (1e-1)-(1e-2) {
|
|
if d.safety.highPressure {
|
|
d.safety.highPressure = false
|
|
klog.Infof("Pressure is low enough for diffusion pump operation; quitting diffusion pump lockout")
|
|
}
|
|
}
|
|
|
|
if d.safety.failsafe {
|
|
d.aboveRough.output = true
|
|
d.aboveHigh.output = true
|
|
d.dpOn = false
|
|
}
|
|
|
|
if d.safety.highPressure {
|
|
d.dpOn = false
|
|
}
|
|
|
|
// Update relay outputs.
|
|
for _, rel := range []struct {
|
|
name string
|
|
gpio gpio
|
|
// activeHigh means the relay is active high, ie. a true source will
|
|
// mean that NO/COM get connected, and a false source means that NC/COM
|
|
// get connected.
|
|
activeHigh bool
|
|
source bool
|
|
}{
|
|
{"rp", d.gpioRoughingPump, false, d.rpOn},
|
|
{"dp", d.gpioDiffusionPump, true, d.dpOn},
|
|
{"pumpdown", d.gpioBtnPumpDown, true, d.pumpdown.output},
|
|
{"vent", d.gpioBtnVent, true, d.vent.output},
|
|
{"rough", d.gpioBelowRough, false, d.aboveRough.output},
|
|
{"high", d.gpioBelowHigh, false, d.aboveHigh.output},
|
|
} {
|
|
val := rel.source
|
|
if rel.activeHigh {
|
|
// Invert because the relays go through logical inversion (ie. a
|
|
// GPIO false is a relay trigger).
|
|
val = !val
|
|
}
|
|
if err := rel.gpio.set(val); err != nil {
|
|
return fmt.Errorf("when outputting %s: %w", rel.name, err)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|