succbone: init

This commit is contained in:
Serge Bazanski 2024-09-12 03:02:57 +02:00
parent 4e31493f0a
commit 05d102ab9b
8 changed files with 591 additions and 0 deletions

1
succd/.gitignore vendored Normal file
View file

@ -0,0 +1 @@
succd

35
succd/README.md Normal file
View file

@ -0,0 +1,35 @@
succd
====
A little daemon for monitoring the SEM. This is a temporary solution that runs on a BeagleBone Enhanced (`succbone.lab`) and *SHOULD* be replaced with a proper PLC/SCADA system and general process control in the future.
Currently it monitors the state of the Pirani gauge via the BBE's builtin ADC.
Accessing at the lab
---
Go to [succbone.lab.fa-fo.de](http://succbone.lab.fa-fo.de).
Known issues
---
Sometimes the websocket doesn't connect. Refreshing the page a few times should fix it.
Running locally
---
```
$ go run . -fake
```
Then point your browser to localhost:8080
Deploying on the succbone
---
```
$ ssh root@succbone systemctl stop succd
$ GOARCH=arm go build .
$ scp succd root@succbone:/usr/bin/succd
$ ssh root@succbone systemctl start succd
```

61
succd/adc.go Normal file
View file

@ -0,0 +1,61 @@
package main
import (
"fmt"
"math"
"os"
"strconv"
"strings"
"time"
)
// adc is an abstract ADC-based analog input.
type adc interface {
// Read returns the ADC value in volts.
Read() (float32, error)
}
// bbADC implements adc using a BeagleBone's built-in ADC.
type bbADC struct {
path string
}
// newBBADC returns a BeagleBone ADC for a given channel number.
func newBBADC(num int) (*bbADC, error) {
path := fmt.Sprintf("/sys/bus/iio/devices/iio:device0/in_voltage%d_raw", num)
if _, err := os.Stat(path); err != nil {
return nil, fmt.Errorf("could not access: %w", err)
}
return &bbADC{
path: path,
}, nil
}
func (b *bbADC) Read() (float32, error) {
by, err := os.ReadFile(b.path)
if err != nil {
return 0, err
}
d := strings.TrimSpace(string(by))
v, err := strconv.ParseUint(d, 10, 64)
if err != nil {
return 0, err
}
// The ADC Vref/Vdd is at 1.8V and is 10-bit (0-4095).
vadc := float32(v) * 1.8 / 4096.0
// The ADC is connected through a resistor divider.
r1 := float32(1000.0)
r2 := float32(4698.0)
vin := vadc / (r1 / (r1 + r2))
return vin, nil
}
// fakeADC implements an adc that outputs a sine wave. This is used for testing.
type fakeADC struct {
}
func (b *fakeADC) Read() (float32, error) {
t := float64(time.Now().UnixMilli()) / 1000
v := (math.Sin(t/10)+1)*(6.5/2) + 2
return float32(v), nil
}

8
succd/go.mod Normal file
View file

@ -0,0 +1,8 @@
module git.fa-fo.de/fafo/jeol-t330a/succd
go 1.22.3
require (
github.com/coder/websocket v1.8.12
k8s.io/klog v1.0.0
)

5
succd/go.sum Normal file
View file

@ -0,0 +1,5 @@
github.com/coder/websocket v1.8.12 h1:5bUXkEPPIbewrnkU8LTCLVaxi4N4J8ahufH2vlo4NAo=
github.com/coder/websocket v1.8.12/go.mod h1:LNVeNrXQZfe5qhS9ALED3uA+l5pPqvwXg3CKoDBB2gs=
github.com/go-logr/logr v0.1.0/go.mod h1:ixOQHD9gLJUVQQ2ZOR7zLEifBX6tGkNJF4QyIY7sIas=
k8s.io/klog v1.0.0 h1:Pt+yjF5aB1xDSVbau4VsWe+dQNzA0qv1LlXdC2dF6Q8=
k8s.io/klog v1.0.0/go.mod h1:4Bi6QPql/J/LkTDqv7R/cd3hPo4k2DG6Ptcz060Ez5I=

121
succd/http.go Normal file
View file

@ -0,0 +1,121 @@
package main
import (
_ "embed"
"fmt"
"html/template"
"net/http"
_ "net/http/pprof"
"os"
"strings"
"time"
"github.com/coder/websocket"
"github.com/coder/websocket/wsjson"
"k8s.io/klog"
)
var (
//go:embed index.html
templateIndexText string
templateIndex = template.Must(template.New("index").Parse(templateIndexText))
)
func formatVolts(v float32) string {
return fmt.Sprintf("%.3f V", v)
}
// formatMbar formats a millibar value using scientific notation and returns a
// HTML fragment (for superscript support).
func formatMbar(v float32) template.HTML {
exp := 0
for v < 1 {
v *= 10
exp -= 1
}
for v >= 10 {
v /= 10
exp += 1
}
res := fmt.Sprintf("%.3f", v)
res += fmt.Sprintf(" x 10<sup>%d</sup>", exp)
res += " mbar"
return template.HTML(res)
}
// httpIndex is the / view.
func (d *daemon) httpIndex(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/" {
http.NotFound(w, r)
return
}
volts, mbar := d.pirani()
loadB, err := os.ReadFile("/proc/loadavg")
load := "unknown"
if err == nil {
parts := strings.Fields(string(loadB))
load = strings.Join(parts[:3], " ")
}
hostname, err := os.Hostname()
if err != nil {
hostname = "unknown"
}
templateIndex.Execute(w, map[string]any{
"volts": formatVolts(volts),
"mbar": formatMbar(mbar),
"hostname": hostname,
"load": load,
})
}
// httpStream is the websocket clientwards data hose, returning a 10Hz update
// stream of pressure/voltage.
func (d *daemon) httpStream(w http.ResponseWriter, r *http.Request) {
c, err := websocket.Accept(w, r, nil)
if err != nil {
return
}
defer c.CloseNow()
t := time.NewTicker(time.Second / 10)
defer t.Stop()
ctx := c.CloseRead(r.Context())
for {
select {
case <-ctx.Done():
c.Close(websocket.StatusNormalClosure, "")
return
case <-t.C:
// TODO(q3k): don't poll, get notified when new ADC readout is available.
volts, mbar := d.pirani()
v := struct {
Volts string
Mbar string
MbarFloat float32
}{
Volts: formatVolts(volts),
Mbar: string(formatMbar(mbar)),
MbarFloat: mbar,
}
if err := wsjson.Write(ctx, c, v); err != nil {
klog.Errorf("Websocket write failed: %v", err)
return
}
}
}
}
// httpMetrics serves minimalistic Prometheus-compatible metrics.
func (d *daemon) httpMetrics(w http.ResponseWriter, r *http.Request) {
// TODO(q3k): also serve Go stuff using the actual Prometheus metrics client
// library.
_, mbar := d.pirani()
fmt.Fprintf(w, "# HELP sem_pressure_mbar Pressure in the SEM chamber, in millibar\n")
fmt.Fprintf(w, "# TYPE sem_pressure_mbar gauge\n")
fmt.Fprintf(w, "sem_pressure_mbar %f\n", mbar)
}

247
succd/index.html Normal file
View file

@ -0,0 +1,247 @@
<!DOCTYPE html>
<meta charset="utf-8">
<title>succd</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style>
body {
font-size: 14px;
padding: 2em;
}
table {
font-size: 40px;
}
th, td {
background-color: #e8e8e8;
padding: 0.4em;
}
th {
font-weight: 100;
text-align: right;
font-size: 30px;
}
td {
text-align: left;
}
td {
font-weight: 800;
}
h2 {
font-style: italic;
font-weight: 100;
}
</style>
<h1>succd</h1>
<h2>nothing more permanent than a temporary solution</h2>
<p style="margin-top: 5em;">
<table>
<tr>
<th>Voltage</th>
<td id="volts">{{.volts}}</td>
</tr>
<tr>
<th>Pressure</th>
<td id="mbar">{{.mbar}}</td>
</tr>
<tr>
<th>Status</th>
<td id="status">OK</td>
</tr>
</table>
</p>
<p style="margin-top: 2em;">
<canvas id="graph" width="1024" height="512"></canvas>
</p>
<p style="font-style: italic; font-size: 12px; margin-top: 5em;">
{{.hostname}} | load: {{.load}} | <a href="/debug/pprof">pprof</a> | <a href="/metrics">metrics</a> | ws ping: <span id="ping"></span>
</p>
<script>
let historical = [];
let canvas = null;
// Push a datapoint (in mbar) to the historical buffer, maintaining enough data
// for ~10 minutes.
let historicalPush = (v) => {
historical.push({v: v, time: Date.now() / 1000});
let len = historical.length;
// TODO(q3k): trim based on recorded timestamp, not constant buffer size.
let trim = len - 8192;
if (trim > 0) {
historical = historical.slice(trim);
}
};
// Draw the historical graph and schedule next draw in 100msec.
let historicalDraw = (w, h) => {
const now = Date.now() / 1000;
// TODO(q3k): better use canvas API to not have so much silly math around
// coordinate calculation.
canvas.clearRect(0, 0, w, h);
canvas.fillStyle = "#f0f0f0";
canvas.fillRect(0, 0, w, h);
// Margins of the main graph window.
const marginLeft = 64;
const marginRight = 32;
const marginTop = 32;
const marginBottom = 32;
// Draw main graph window.
canvas.fillStyle = "#f8f8f8";
canvas.strokeStyle = "#444";
canvas.lineWidth = 1;
canvas.fillRect(marginLeft, marginTop, w-(marginLeft+marginRight), h-(marginTop+marginBottom));
canvas.strokeRect(marginLeft, marginTop, w-(marginLeft+marginRight), h-(marginTop+marginBottom));
// Range of decades for Y value.
const ymin = -4;
const ymax = 4;
// Pixels per decade.
const yscale = (h - (marginTop+marginBottom)) / (ymax - ymin);
// For every decade...
for (let i = ymin; i < ymax; i++) {
const yoff = (i - ymin) * yscale + yscale / 2;
const y = Math.floor(h - marginBottom - yoff) + 0.5;
// Draw Y scale ticks.
canvas.beginPath();
canvas.moveTo(marginLeft-5, y);
canvas.lineTo(marginLeft, y);
canvas.strokeStyle = "#000";
canvas.stroke();
// Draw Y grid.
canvas.beginPath();
canvas.moveTo(marginLeft, y);
canvas.lineTo(w-marginRight-1, y);
canvas.strokeStyle = "#ccc";
canvas.stroke();
// Draw Y fine grid.
if (i > ymin) {
for (let j = 2; j < 10; j++) {
let yy = y - Math.log10(j/10) * yscale;
canvas.beginPath();
canvas.moveTo(marginLeft, yy);
canvas.lineTo(w-marginRight-1, yy);
canvas.strokeStyle = "#eee";
canvas.stroke();
}
}
// Draw Y labels.
canvas.font = "10px sans-serif";
canvas.fillStyle = "#000";
canvas.textAlign = "right";
const text = `10^${i}`;
canvas.fillText(text, marginLeft-10, y+5);
}
// How much space to leave in front of the graph.
const xhead = 10;
// Draw X labels..
canvas.textAlign = "center";
canvas.fillText("Now", w - marginRight - xhead, h - marginBottom + 15)
canvas.fillText("-10min", marginLeft, h - marginBottom + 15)
const xmax = 60 * 10;
const xscale = (w - (marginLeft+marginRight+xhead)) / (xmax);
// Clip to main window.
canvas.save();
canvas.beginPath();
canvas.rect(marginLeft, marginTop, w-(marginLeft+marginRight), h-(marginTop+marginBottom+1));
canvas.clip();
// Draw actual data line.
let first = true;
canvas.beginPath();
historical.forEach((v) => {
const time = v.time;
const mbar = v.v;
const elapsed = now-time;
if (elapsed > xmax) {
return;
}
const x = (w - marginRight - xhead) - (elapsed * xscale);
const yoff = (Math.log10(mbar) - ymin) * yscale + yscale / 2;
const y = h - marginBottom - yoff;
if (first) {
first = false;
canvas.moveTo(x, y);
} else {
canvas.lineTo(x, y);
}
});
canvas.strokeStyle = "#de1010";
canvas.lineWidth = 1;
canvas.stroke();
canvas.restore();
setTimeout(() => { historicalDraw(w, h); }, 100);
};
window.addEventListener("load", (_) => {
console.log("s u c c");
let status = document.querySelector("#status");
let volts = document.querySelector("#volts");
let mbar = document.querySelector("#mbar");
let ping = document.querySelector("#ping");
canvas = document.querySelector("#graph").getContext("2d");
// TODO(q3k): unhardcode this and generally support scaling canvas.
historicalDraw(1024, 512);
// Basic retry loop for connecting to WS.
let loc = window.location;
let wsloc = "";
if (loc.protocol == "https:") {
wsloc = "wss:";
} else {
wsloc = "ws:";
}
wsloc += "//" + loc.host + "/stream";
console.log("Connecting to " + wsloc + "...");
let connected = false;
let connect = () => {
const socket = new WebSocket(wsloc);
socket.addEventListener("open", (event) => {
connected = true;
console.log("Socket connected!");
status.innerHTML = "Online";
status.style = "background-color: #60f060;";
});
socket.addEventListener("message", (event) => {
const data = JSON.parse(event.data);
volts.innerHTML = data.Volts;
mbar.innerHTML = data.Mbar;
historicalPush(data.MbarFloat);
ping.innerHTML = Date.now();
});
socket.addEventListener("close", (event) => {
status.innerHTML = "Offline";
status.style = "background-color: #f06060;";
if (connected) {
console.log("Socket dead, reconnecting...");
}
connected = false;
setTimeout(connect, 1000);
});
socket.addEventListener("error", (event) => {
socket.close();
});
};
connect();
});
</script>

113
succd/main.go Normal file
View file

@ -0,0 +1,113 @@
package main
import (
"context"
"errors"
"flag"
"fmt"
"math"
"net/http"
"os"
"os/signal"
"sync"
"time"
"k8s.io/klog"
)
// daemon is the main state of the succdaemon.
type daemon struct {
// adcPirani is the adc implementation returning the voltage of the Pfeiffer
// Pirani gauge.
adcPirani adc
// mu guards state variables below.
mu sync.RWMutex
// adcPiraniVolts is the last readout of adcPirani.
adcPiraniVolts float32
}
// process runs the pain acquisition and control loop of succd.
func (d *daemon) process(ctx context.Context) {
ticker := time.NewTicker(time.Millisecond * 100)
defer ticker.Stop()
for {
select {
case <-ticker.C:
if err := d.processOnce(ctx); err != nil {
if errors.Is(err, ctx.Err()) {
return
} else {
klog.Errorf("Processing error: %v", err)
time.Sleep(time.Second * 10)
}
}
case <-ctx.Done():
return
}
}
}
// processOnce runs the main loop step of succd.
func (d *daemon) processOnce(_ context.Context) error {
v, err := d.adcPirani.Read()
if err != nil {
return fmt.Errorf("when reading ADC: %w", err)
}
d.mu.Lock()
d.adcPiraniVolts = v
d.mu.Unlock()
return nil
}
// pirani returns the Pirani gauge voltage and pressure.
func (d *daemon) pirani() (volts float32, mbar float32) {
d.mu.RLock()
volts = d.adcPiraniVolts
d.mu.RUnlock()
// Per Pirani probe docs.
bar := math.Pow(10.0, float64(volts)-8.5)
mbar = float32(bar * 1000.0)
return
}
var (
flagFake bool
flagListenHTTP string
)
func main() {
flag.BoolVar(&flagFake, "fake", false, "Enable fake mode which allows to run succd for tests outside the succbone")
flag.StringVar(&flagListenHTTP, "listen_http", ":8080", "Address at which to listen for HTTP requests")
flag.Parse()
ctx, _ := signal.NotifyContext(context.Background(), os.Interrupt)
d := daemon{}
if flagFake {
klog.Infof("Starting with fake Pirani probe")
d.adcPirani = &fakeADC{}
} else {
adc, err := newBBADC(0)
if err != nil {
klog.Exitf("Failed to setup Pirani ADC: %v", err)
}
d.adcPirani = adc
}
http.HandleFunc("/", d.httpIndex)
http.HandleFunc("/stream", d.httpStream)
http.HandleFunc("/metrics", d.httpMetrics)
klog.Infof("Listening for HTTP at %s", flagListenHTTP)
go func() {
if err := http.ListenAndServe(flagListenHTTP, nil); err != nil {
klog.Errorf("HTTP listen failed: %v", err)
}
}()
go d.process(ctx)
<-ctx.Done()
}